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LocalDyGS: Multi-view Global Dynamic Scene Modeling via
Adaptive Local Implicit Feature Decoupling

Supplementary Material

A. Overview001

The supplementary content is organized as follows: Section002
B outlines the implementation details of our paper, including003
the workflow, the deactivation of Temporal Gaussians, the004
choice of activation functions for each parameter, and the005
method for extracting dynamic objects. Section C presents006
additional experimental data and results.007

B. Implementation details008

B.1. Implementation Workflow.009

Our algorithm is divided into two main parts: initialization010
of the local space and the specific rendering process. The011
detailed steps are presented in the Algorithm 1 and 2.012

In the first stage, we fuse and downsample the Colmap013
point cloud generated from N frames of images, resulting in014
a point cloud with a certain level of motion awareness. We015
assign new parameters, namely scale and static feature, to016
this point cloud, initializing each seed and its local space.017

In the second stage, the static features of each local space018
provide static information, while time-varying dynamic019
residual features represent motion changes within the local020
space at each moment. A weighted sum of these two features021
is passed through a specific MLP to decode the attributes022
of the Temporal Gaussians. Finally, all active Temporal023
Gaussians generated by each local space are rasterized to024
produce the rendered image It at the query time.025

It is worth noting that, unlike previous methods that model026
global motion by mapping points from canonical space027
to deformed spaces at each time step via spatiotemporal028
structures [14, 15, 18] or by using Fourier techniques and029
polynomial functions to model point trajectories [3], our030
method achieves global dynamic modeling by representing031
motion within local spaces using time-varying Temporal032
Gaussians.033

B.2. Activation functions034

We use separate MLPs to predict each parameter of the035
Temporal Gaussian at each time step. Each MLP is036
implemented with two linear layers of dimension 128 and037
uses ReLU as the activation function. Different activation038
functions are employed for the outputs: a Sigmoid activation039
function is used for color and opacity; the normalization040
activation method from [4] is applied for rotation; and the041
scaling approach follows the technique outlined in [8].042

Algorithm 1: Local Space Initialization
Input: Temporal multi-view N frames of images

IN
i=0

Output: The center, scale and static feature set of
local space C, S, Fs;

Initialization: Fs = 0; C, S = {ϕ}; P = {ϕ}.
for Ik in IN

i=0 do
Pk = Colmap(Ik)
P = P + Pk

end
P = DownSample(P)
C = GetCenter(P )
S = KNN(P, 3)
return C,S,Fs.

Algorithm 2: Rendering Process
Input: The center, scale and static feature set of

local space C, S, Fs; querry time t; view v
Output: Rendered image It at time t
Temperal Gaussian set TG = {ϕ}
for ci, si, f i

s in C, S, Fs do
f i
d = DynamicResidualField(ci, t)
wi

s, w
i
d = WeightField (ci, t)

f i
w = wi

s · f i
s + wi

d · f i
d

TGi = si · MLPs(fw, v)
TG = TG + TGi

end
TG = Deactivation(TG)
It = Splatting(TG,v)
return It.

B.3. The difference with some current method. 043

First, initializing with SfM point clouds from multi-frame 044
images was first introduced by SpaceTimeGS. However, 045
they initialize these points as Gaussian points and model 046
their motion using polynomials. In contrast, we initialize 047
these points as seed points, which generate Gaussian points 048
within their local space, effectively leveraging the geometric 049
advantages of multi-frame point cloud initialization. 050

Second, while our method draws some inspiration from 051
NeRFPlayer, it is fundamentally different. NeRFPlayer 052
relies on a NeRF-based deformation field, which often 053
struggles with large-scale motion. In contrast, our approach 054
is GS-based and deviates from the conventional deformation 055
field paradigm. Instead, we introduce two novel strategies: 056
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Table 1. Per-scenes PSNR results on the N3DV dataset [5]. The best and the second best results are denoted by orange and orange.

Method Coffee Martini Spinach Cut Beef Flame Salmon Flame Steak Sear Steak Mean

MixVoxels [12] 29.36 31.61 31.30 29.92 31.21 31.43 30.80
HexPlane [1] – 32.04 32.55 29.47 32.08 32.39 31.70
K-Planes [2] 29.99 32.60 31.82 30.44 32.38 32.52 31.63
4DGS [14] 27.34 32.46 32.90 29.20 32.51 32.49 31.15

3DGStream [9] 27.75 33.31 33.21 28.42 34.30 33.01 31.67
SpaceTimeGS [6] 28.61 33.18 33.52 29.48 33.64 33.89 32.05

Real-Time4DGS [17] 28.33 32.93 33.85 29.38 34.03 33.51 32.01
LocalDyGS(Ours) 29.03 33.31 33.67 29.82 34.09 33.77 32.28

(a) Dynamic Rendering (b) Static Rendering

Figure 1. Our method can achieve dynamic-static separation
without explicit supervision. (a) and (b) show the rendering results
of dynamic and static Temporal Gaussians, respectively.

(1) decomposing the global space into local spaces and057
(2) generating Temporal-aware Gaussians to model motion058
within each local space. Meanwhile, our static and dynamic059
residual features have distinct physical meanings compared060
to previous works, as shown in Fig. 4 of the main paper.061

Experimentally, our method surpasses NeRFPlayer across062
multiple aspects, including training efficiency, rendering063
quality, inference speed, and the ability to handle complex064
scenes.065

B.4. Dynamic-static decomposition066

Based on this decoupling approach, our method can achieve067
the separation of dynamic and static seeds without auxiliary068
information or explicit supervision, as shown in Fig. 1.069
Additionally, we provide videos (5 Extract dynamic ) in the070
supplementary materials.071

C. Experiments and Results072

Table 1 provides a detailed comparison of the results for each073
scene in the N3DV dataset, while Figure 4 displays all the074
rendering results rendered by our method. To demonstrate075
the robustness and generalization of our approach, we also076
conducted experiments on the ENeRF dataset. The results,077
shown in Table 2, follow the training policies described in078
4k4d [16].079

Fig. 2 illustrates the core rendering primitives and the080
rendered images produced by our method, showcasing both081
the seed points and the temporal Gaussians.082

In Fig. 3, we present a comparison of the rendering083
quality of our method against other approaches, including084

(a) Seeds (b) Temporal Gaussians (c) Rendering

Figure 2. (a), (b), and (c) respectively show the seeds, the temporal
Gaussians, and the final rendered images.

(a) Gaussian-Flow [3] (b) SPGS [11] (c) Ours

Figure 3. (a), (b), and (c) respectively show the rendering results of
Gaussian-Flow,SPGS,Ours.

the latest state-of-the-art methods, Gaussian-Flow [3] and 085
SPGS [11]. 086

In Fig. 6, we compare our method with the online 087
method 3DGStream on the ENeRF dataset. Our method 088
demonstrates superior subjective performance as well. 089

In Fig. 5, we compare our method with 4DGS. The results 090
demonstrate that our local modeling approach produces 091
cleaner renderings with fewer floaters. Additionally, for the 092
more challenging VRU dataset, our method captures motion 093
more faithfully compared to 4DGS, effectively avoiding 094
issues such as the disappearance of players. 095

To better showcase the effectiveness of our model, we 096
provide several videos for demonstration and comparison. 097

Table 2. Performance comparison of different methods on ENeRF
dataset. The results are derived from 4k4d.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
ENeRF [7] 25.452 0.809 0.273
IBRNet [13] 24.966 0.929 0.172
KPlanes [2] 21.310 0.735 0.454
4k4d [16] 25.815 0.898 0.147
LocalDyGS(Ours) 26.230 0.923 0.065
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Figure 4. The rendering results of our method on the N3DV dataset [5].

(a) 4DGS (b) Ours (c) 4DGS (d) Ours

Figure 5. A comparison between 4DGS [14] and our method on the N3DV [5] and VRU Basketball [10] datasets.

(a) GT (b) Ours (c) 3DGSTream [9]

Figure 6. Qualitative results of actor 2 3 from the E-NeRF dataset [7].
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