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A. Degradation Preictor
The proposed universal multi-prompt framework, MP-HSIR,
can perform specific restoration tasks either based on human
instructions or autonomously via the degradation predictor.
In this work, we employ a ResNet-34 network with fast
Fourier convolution [6] to train classification models sep-
arately on natural scene and remote sensing hyperspectral
datasets. The binary cross-entropy loss used for training is
defined as follows:

L = − 1

N

N∑
i=1

[yi log pi + (1− yi) log (1− pi)] , (1)

where N denotes the number of samples, pi represents the
output after sigmoid activation, and yi is the corresponding
ground-truth label. The training was conducted with a batch
size of 64, using the same optimizer as in the restoration
experiments. The initial learning rate was set to 1 × 10−4

and progressively decreased to 1×10−6 via cosine annealing
[24]. The model was trained for 1000 epochs on the natural
scene hyperspectral dataset and 4000 epochs on the remote
sensing hyperspectral dataset.

Table 1 presents the accuracy and precision of the degra-
dation predictor for both hyperspectral datasets. The results
show that the predictor achieves 100% accuracy and preci-
sion across all tasks, demonstrating MPIR-HSI’s effective-
ness in supporting all trained blind restoration tasks.

B. Dataset Details
This section provides a comprehensive overview of the 13
datasets used across 9 hyperspectral image (HSI) restoration
tasks and real-world scenarios, as summarized in Table 2.
ARAD [2]. The ARAD dataset, derived from the NTIRE
2022 Spectral Recovery Challenge, was collected using a
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Task Natural Scene Remote Sensing
Accuracy ↑ Precision ↑ Accuracy ↑ Precision ↑

Gaussian Denoising 100.00 100.00 100.00 100.00
Complex Denoising 100.00 100.00 100.00 100.00
Gaussian Deblurring 100.00 100.00 100.00 100.00

Super-Resolution 100.00 100.00 100.00 100.00
Inpainting 100.00 100.00 100.00 100.00
Dehazing 100.00 100.00 100.00 100.00

Band Completion 100.00 100.00 100.00 100.00

Table 1. Accuracy and precision results of the degradation predictor
in degradation classification

Specim IQ hyperspectral camera. It consists of 1,000 images,
with 900 allocated for training and 50 for testing.
ICVL [1]. The ICVL dataset was obtained using a Specim
PS Kappa DX4 hyperspectral camera combined with a ro-
tating stage for spatial scanning. It contains 201 images,
with 100 for training and 50 for testing, ensuring no scene
overlap.
Xiong’an [38]. The Xiong’an dataset was captured using an
imaging spectrometer developed by the Chinese Academy
of Sciences. Three central regions of size 512 × 512 were
randomly cropped for testing, while the remaining areas
were used for training.
WDC [44]. The Washington DC (WDC) dataset was cap-
tured by a Hydice sensor. A central region of size 256 ×
256 was selected for testing, with the remainder used for
training.
PaviaC [14]. The Pavia Center (PaviaC) dataset was ac-
quired using a ROSIS sensor, following the same partitioning
strategy as the WDC dataset.
PaviaU [14]. The Pavia University (PaviaU) dataset was also
collected using a ROSIS sensor, with the same partitioning
strategy as WDC.
Houston [36]. The Houston dataset was obtained using an
ITRES CASI-1500 sensor, employing the same partitioning
strategy as WDC.
Chikusei [39]. The Chikusei dataset was captured using
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Type Dataset Sensor Wavelength (nm) Channels Size GSD (m)

Natural
HSIs

ARAD 1K Specim IQ 400–700 31 482×512 /

ICVL Specim PS Kappa DX4 400–700 31 1392×1300 /

Remote
Sensing

HSIs

Xiong’an Unknown 400–1000 256 3750×1580 0.5

WDC Hydice 400–2400 191 1208×307 5

PaviaC ROSIS 430–860 102 1096×715 1.3

PaviaU ROSIS 430–860 103 610×340 1.3

Houston ITRES CASI-1500 364–1046 144 349×1905 2.5

Chikusei HH-VNIR-C 343–1018 128 2517×2335 2.5

Eagle AsiaEAGLE II 401–999 128 2082×1606 1

Berlin Unknown 455–2447 111 6805×1830 3.6

Urban Hydice 400-2500 210 307×307 2

APEX Unknown 350-2500 285 1000×1500 2

EO-1 Hyperion 357-2567 242 3471×991 30

Table 2. Properties of 13 Natural Scene and Remote Sensing Hyperspectral Datasets.

an HH-VNIR-C sensor. Four 512 × 512 regions were ran-
domly cropped for testing, with the remaining areas used for
training.
Eagle [30]. The Eagle dataset was collected using an Asi-
aEAGLE II sensor, following the same partitioning strategy
as WDC.
Berlin [28]. The Berlin dataset utilizes only the HyMap
image from the BerlinUrbGrad dataset. A 512 × 512 central
region was randomly cropped for testing, while the remain-
ing data were used for training.
Urban [3]. The Urban dataset, collected using a Hydice
sensor, is specifically used for real-world denoising experi-
ments.
APEX [15]. The APEX dataset exhibits characteristics simi-
lar to the Urban dataset and is primarily used for fine-tuning
pre-trained models.
EO-1 [8]. The EO-1 dataset was captured by the Hyperion
sensor. Ten scenes were collected for testing, with 67 invalid
bands removed, retaining 175 valid bands for real-world
dehazing experiments.

All datasets underwent min-max normalization, and train-
ing samples were uniformly cropped to 64 × 64.

C. Detailed Experimental Setup

In this section, we provide a detailed description of the ex-
perimental settings for the 9 HSI restoration tasks.

Gaussian Denoising. Each image was corrupted by zero-
mean independent and identically distributed (i.i.d.) Gaus-
sian noise with sigma ranging from 30 to 70. For testing,
sigma = 30, 50, and 70 were selected for evaluation.

Complex Denoising. Each image was corrupted with one
of the following four noise scenarios:

1) Case 1 (Non-i.i.d. Gaussian Noise): All bands were
corrupted by non-i.i.d. Gaussian noise with standard devia-
tions randomly selected from 10 to 70.

2) Case 2 (Gaussian Noise + Stripe Noise): All bands
were corrupted by non-i.i.d. Gaussian noise, and one-third
of the bands were randomly selected to add column stripe
noise with intensities ranging from 5% to 15%.

3) Case 3 (Gaussian Noise + Deadline Noise): The noise
generation process was similar to Case 2, but stripe noise
was replaced by deadline noise.

4) Case 4 (Gaussian Noise + Impulse Noise): All bands
were corrupted by non-i.i.d. Gaussian noise, and one-third
of the bands were randomly selected to add impulse noise
with intensities ranging from 10% to 70%.

Gaussian Deblurring. An empirical formula was used
to calculate the standard deviation σ based on the Gaussian
kernel size KS , formulated as:

σ = 0.3×
(
KS − 1

2
− 1

)
+ 0.8. (2)

For natural hyperspectral datasets, KS was set to 9, 15,
and 21, while for remote sensing hyperspectral datasets, KS

was set to 7, 11, and 15.
Super-Resolution. Bicubic interpolation was used to

downsample the images, with downscaling factors of 2, 4,
and 8. To ensure that the input and output image sizes
of the all-in-one model remained consistent, an unpooling
operation was applied to resize the downsampled HSIs to
their original dimensions.

Inpainting. Random masks with rates of 0.7, 0.8, and
0.9 were applied to each image for the inpainting task.

Dehazing. To realistically simulate haze contamination,
the haze synthesis method from [11] was adopted. Specifi-



Type Methods

Gaussian Denoising (ICVL [1]) Gaussian Denoising (ARAD [2]) Gaussian Denoising (Xiong’an [38])

Sigma = 30 Sigma = 50 Sigma = 70 Sigma = 30 Sigma = 50 Sigma = 70 Sigma = 30 Sigma = 50 Sigma = 70

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

QRNN3D [35] 42.18 / 0.967 39.70 / 0.942 38.09 / 0.933 41.67 / 0.967 39.15 / 0.935 36.71 / 0.894 37.86 / 0.870 36.03 / 0.825 34.29 / 0.792
SST [19] 43.32 / 0.976 41.09 / 0.952 39.51 / 0.949 43.02 / 0.972 40.58 / 0.951 38.99 / 0.941 39.26 / 0.878 37.34 / 0.848 35.99 / 0.824

SERT [20] 43.53 / 0.978 41.32 / 0.966 39.82 / 0.956 43.21 / 0.975 40.84 / 0.959 39.21 / 0.945 39.54 / 0.885 37.58 / 0.859 36.37 / 0.833
LDERT [21] 44.12 / 0.982 41.68 / 0.968 39.95 / 0.957 43.74 / 0.979 41.35 / 0.966 39.32 / 0.950 39.92 / 0.889 37.96 / 0.868 36.54 / 0.838

All
in

One

AirNet [18] 42.02 / 0.966 39.68 / 0.942 37.59 / 0.923 41.39 / 0.963 39.08 / 0.933 37.09 / 0.903 34.04 / 0.700 31.61 / 0.665 30.17 / 0.639
PromptIR [31] 42.40 / 0.971 40.14 / 0.954 38.20 / 0.934 41.84 / 0.967 39.55 / 0.947 37.67 / 0.921 34.90 / 0.715 32.76 / 0.680 31.31 / 0.657

PIP [22] 43.00 / 0.974 40.69 / 0.958 38.94 / 0.941 42.33 / 0.970 40.07 / 0.953 38.36 / 0.933 34.51 / 0.704 32.43 / 0.671 30.98 / 0.647
HAIR [4] 42.53 / 0.972 40.23 / 0.957 38.78 / 0.939 42.03 / 0.968 39.76 / 0.950 37.95 / 0.928 34.51 / 0.712 32.22 / 0.675 30.89 / 0.650

InstructIR [7] 42.99 / 0.974 40.84 / 0.960 39.23 / 0.946 42.21 / 0.970 40.16 / 0.955 38.60 / 0.938 33.79 / 0.703 31.47 / 0.662 29.96 / 0.633
PromptHSI [17] 42.61 / 0.976 40.27 / 0.960 39.08 / 0.945 41.90 / 0.971 39.84 / 0.959 38.37 / 0.938 39.54 / 0.902 37.80 / 0.877 36.87 / 0.864
MP-HSIR (Ours) 43.62 / 0.977 41.41 / 0.963 39.82 / 0.951 43.12 / 0.975 40.88 / 0.960 39.28 / 0.946 40.55 / 0.922 38.70 / 0.896 37.17 / 0.874

Table 3. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different Gaussian noise levels
on Gaussian denoising tasks. The best and second-best performances are highlighted in red and blue, respectively.

cally, 100 haze masks were extracted from the cirrus band
of Landsat-8 OLI and superimposed onto the original image
according to the wavelength ratio to generate haze-affected
HSIs, modeled as:

Ii = Jie

(
λ1
λi

)γ
ln t1 +A

(
1− e

(
λ1
λi

)γ
ln t1

)
, (3)

where I is the hazy HSI, J is the clear HSI, A is the global
atmospheric light, λ is the wavelength, and γ is the spatial
function, which is set to 1. The reference transmission map
t1 is calculated from the cirrus band reflectance:

t1 = 1− ωB9, (4)

where ω is a weighting factor controlling the haze intensity,
and B9 is the cirrus band reflectance. In the experiments, ω
was set to [0.5, 0.75, 1], corresponding to different levels of
haze contamination.

Band Completion. A certain proportion of bands were
discarded for each image, with discard rates of 0.1, 0.2, and
0.3. The experimental results were evaluated only on the
missing bands.

Motion Deblurring. The pre-trained model was fine-
tuned and tested on this task with a blur kernel radius of 15
and a blur angle of 45 degrees.

Poisson Denoising. The pre-trained model was directly
tested on this task with a Poisson noise intensity scaling
factor of 10.

D. Visualization Results of Prompts

In Table 1, we present the similarity matrices of prompt vec-
tors for different degradation types, comparing PromptIR
[31], InstructIR [7], and the proposed method. PromptIR re-
lies exclusively on visual prompts, InstructIR utilizes textual
prompts for guidance, and the proposed method integrates
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Figure 1. Similarity matrices of prompt vector for seven HSI
restoration tasks, with task names as in manuscript.

text-visual synergistic prompts to enhance degradation mod-
eling. As illustrated in the figure, both PromptIR and Instruc-
tIR struggle to effectively differentiate between various HSI
degradation types, whereas our method demonstrates distinct
separation for each individual task, highlighting its superior
capability in handling diverse degradation scenarios.

E. More Experimental Results
In this section, we present additional experimental results,
including the results of more quantitative results, model effi-
ciency, more results of ablation study, controllability analy-
sis, and more visual comparisons.

E.1. More Quantitative Results
In this section, we provide a detailed quantitative comparison
for 7 all-in-one HSI restoration tasks. The experimental
results across different degradation levels are systematically
presented for each task, including Gaussian denoising in
Table 3, complex denoising in Table 4, Gaussian deblurring
in Table 5, super-resolution in Table 6, inpainting in Table 8,
dehazing in Table 9, and band completion in Table 10.

In addition, we further evaluate the performance on real-
world hyperspectral data using the no-reference metric QSFL
[37]. The results on the Urban and EO-1 datasets are reported
in Table 7, providing a more comprehensive assessment of
generalization ability under practical conditions.



Type Methods

Complex Denoising (ICVL [1]) Complex Denoising (ARAD [2]) Complex Denoising (WDC [44])

Case = 1 Case = 2 Case = 3 Case = 4 Case = 1 Case = 2 Case = 3 Case = 4 Case = 1 Case = 2 Case = 3 Case = 4

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

QRNN3D [35] 42.24 / 0.969 41.98 / 0.968 41.62 / 0.968 40.55 / 0.960 41.74 / 0.966 41.55 / 0.965 41.38 / 0.964 39.76 / 0.946 31.98 / 0.885 31.77 / 0.882 31.48 / 0.878 28.05 / 0.822
SST [19] 43.38 / 0.976 42.69 / 0.973 42.51 / 0.972 41.16 / 0.964 42.84 / 0.973 42.38 / 0.971 42.01 / 0.970 40.56 / 0.956 33.85 / 0.907 33.69 / 0.905 33.37 / 0.901 29.92 / 0.841

SERT [20] 43.96 / 0.980 43.48 / 0.978 43.45 / 0.977 42.37 / 0.969 43.56 / 0.978 43.19 / 0.976 42.88 / 0.974 41.85 / 0.963 34.48 / 0.922 34.26 / 0.920 33.98 / 0.915 30.53 / 0.854
LDERT [21] 44.04 / 0.981 43.57 / 0.979 43.55 / 0.979 42.51 / 0.971 43.67 / 0.979 43.33 / 0.977 43.06 / 0.974 42.02 / 0.965 34.65 / 0.923 34.42 / 0.920 34.13 / 0.917 30.74 / 0.856

All
in

One

AirNet [18] 42.11 / 0.968 41.24 / 0.964 40.89 / 0.961 38.49 / 0.942 41.62 / 0.965 40.83 / 0.959 40.31 / 0.957 37.59 / 0.905 29.02 / 0.752 28.93 / 0.744 28.67 / 0.740 25.67 / 0.667
PromptIR [31] 42.76 / 0.973 41.93 / 0.969 41.43 / 0.969 39.04 / 0.947 42.26 / 0.969 41.54 / 0.964 40.90 / 0.964 38.12 / 0.919 29.84 / 0.761 29.71 / 0.754 29.39 / 0.747 26.38 / 0.676

PIP [22] 42.96 / 0.974 42.13 / 0.970 41.38 / 0.969 40.19 / 0.959 42.39 / 0.971 41.71 / 0.966 41.11 / 0.966 39.45 / 0.943 29.57 / 0.751 29.31 / 0.745 29.17 / 0.740 25.95 / 0.658
HAIR [4] 41.78 / 0.965 41.47 / 0.965 40.68 / 0.958 38.58 / 0.943 41.19 / 0.959 40.95 / 0.961 40.53 / 0.959 37.92 / 0.909 29.38 / 0.756 29.22 / 0.750 28.73 / 0.744 25.40 / 0.664

InstructIR [7] 41.29 / 0.963 40.89 / 0.961 39.94 / 0.958 38.46 / 0.945 40.72 / 0.960 40.38 / 0.957 39.94 / 0.956 38.21 / 0.934 28.66 / 0.736 28.47 / 0.730 28.19 / 0.725 24.63 / 0.637
PromptHSI [17] 40.61 / 0.967 40.36 / 0.965 39.30 / 0.960 36.27 / 0.927 40.22 / 0.951 39.98 / 0.955 39.42 / 0.953 35.39 / 0.884 34.93 / 0.931 34.87 / 0.930 34.49 / 0.928 30.78 / 0.857
MP-HSIR (Ours) 43.07 / 0.975 42.46 / 0.972 42.20 / 0.972 41.42 / 0.966 42.74 / 0.973 42.32 / 0.971 41.93 / 0.970 40.98 / 0.960 35.21 / 0.933 34.99 / 0.931 34.72 / 0.928 31.36 / 0.880

Table 4. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different cases on Complex
denoising tasks. The best and second-best performances are highlighted in red and blue, respectively.

Type Methods

Gaussian Deblurring (ICVL [1]) Gaussian Deblurring (PaviaC [14]) Gaussian Deblurring (Eagle [30])

Radius = 9 Radius = 15 Radius = 21 Radius = 7 Radius = 11 Radius = 15 Radius = 7 Radius = 11 Radius = 15

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

Stripformer [33] 49.21 / 0.994 45.85 / 0.989 43.04 / 0.980 38.73 / 0.934 36.95 / 0.914 35.72 / 0.891 44.68 / 0.974 41.37 / 0.958 39.83 / 0.942
FFTformer [16] 49.83 / 0.994 46.43 / 0.989 43.69 / 0.981 39.82 / 0.942 37.63 / 0.919 36.44 / 0.901 45.51 / 0.980 42.18 / 0.962 40.59 / 0.944
LoFormer [26] 50.35 / 0.995 46.94 / 0.991 44.15 / 0.983 39.54 / 0.941 37.41 / 0.918 36.21 / 0.892 45.32 / 0.979 42.03 / 0.961 40.42 / 0.946
MLWNet [9] 50.68 / 0.996 47.54 / 0.991 44.76 / 0.983 40.85 / 0.949 38.92 / 0.929 37.28 / 0.901 46.61 / 0.983 43.68 / 0.969 41.83 / 0.955

All
in

One

AirNet [18] 50.64 / 0.995 47.10 / 0.991 43.89 / 0.982 39.45 / 0.940 37.76 / 0.921 36.08 / 0.893 44.83 / 0.977 42.32 / 0.966 40.11 / 0.946
PromptIR [31] 51.00 / 0.996 47.70 / 0.992 44.32 / 0.983 40.41 / 0.948 38.62 / 0.929 37.13 / 0.904 46.17 / 0.981 43.45 / 0.968 41.60 / 0.955

PIP [22] 51.05 / 0.996 47.29 / 0.991 44.21 / 0.983 40.31 / 0.944 38.51 / 0.926 36.73 / 0.902 45.90 / 0.982 42.75 / 0.968 40.86 / 0.951
HAIR [4] 49.43 / 0.994 46.06 / 0.989 43.87 / 0.981 39.97 / 0.943 38.18 / 0.923 35.64 / 0.891 45.14 / 0.979 42.69 / 0.966 40.48 / 0.947

InstructIR [7] 24.19 / 0.533 33.44 / 0.878 44.51 / 0.983 19.66 / 0.329 25.12 / 0.583 36.32 / 0.894 23.35 / 0.477 34.05 / 0.872 40.64 / 0.949
PromptHSI [17] 25.16 / 0.619 30.89 / 0.852 41.52 / 0.980 38.73 / 0.936 36.63 / 0.913 34.84 / 0.888 42.45 / 0.972 39.34 / 0.952 37.46 / 0.938
MP-HSIR (Ours) 51.53 / 0.996 47.60 / 0.992 45.07 / 0.982 40.85 / 0.949 38.95 / 0.928 37.19 / 0.905 46.26 / 0.982 43.54 / 0.969 41.36 / 0.952

Table 5. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different blur kernel radius on
Gaussian deblurring tasks. The best and second-best performances are highlighted in red and blue, respectively.

Type Methods

Super-Resolution (ARAD [2]) Super-Resolution (PaviaU [14]) Super-Resolution (Houston [36])

Scale = 2 Scale = 4 Scale = 8 Scale = 2 Scale = 4 Scale = 8 Scale = 2 Scale = 4 Scale = 8

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

SNLSR [13] 43.93 / 0.980 34.56 / 0.902 29.67 / 0.813 34.58 / 0.869 29.85 / 0.719 27.23 / 0.601 34.91 / 0.908 31.33 / 0.782 28.86 / 0.671
MAN [34] 44.81 / 0.985 35.35 / 0.912 30.49 / 0.830 34.92 / 0.872 30.26 / 0.723 27.59 / 0.604 35.26 / 0.911 31.68 / 0.785 29.15 / 0.677

ESSAformer [41] 45.32 / 0.988 36.02 / 0.927 30.85 / 0.838 35.47 / 0.879 30.60 / 0.728 27.96 / 0.606 35.60 / 0.913 31.94 / 0.787 29.57 / 0.679
SRFormer [43] 45.84 / 0.989 36.73 / 0.931 31.48 / 0.845 35.92 / 0.887 31.08 / 0.745 28.41 / 0.620 36.15 / 0.920 32.44 / 0.805 29.81 / 0.684

All
in

One

AirNet [18] 44.82 / 0.985 35.26 / 0.919 30.12 / 0.828 34.85 / 0.871 30.19 / 0.724 27.76 / 0.609 35.22 / 0.911 31.65 / 0.786 29.13 / 0.676
PromptIR [31] 45.33 / 0.988 36.00 / 0.927 30.77 / 0.838 35.57 / 0.883 30.81 / 0.735 28.20 / 0.619 35.96 / 0.915 32.38 / 0.798 29.85 / 0.684

PIP [22] 46.01 / 0.989 37.34 / 0.939 31.73 / 0.853 35.71 / 0.885 31.02 / 0.744 28.20 / 0.618 36.10 / 0.917 32.55 / 0.806 30.02 / 0.692
HAIR [4] 43.77 / 0.984 35.89 / 0.924 30.87 / 0.836 35.49 / 0.882 30.79 / 0.736 28.13 / 0.616 35.81 / 0.913 32.17 / 0.795 29.64 / 0.680

InstructIR [7] 43.47 / 0.984 35.46 / 0.921 30.61 / 0.834 35.25 / 0.879 30.71 / 0.732 28.05 / 0.613 35.68 / 0.909 32.15 / 0.789 29.73 / 0.681
PromptHSI [17] 40.25 / 0.975 35.41 / 0.931 29.35 / 0.806 34.84 / 0.871 30.13 / 0.722 27.27 / 0.602 35.34 / 0.912 31.62 / 0.778 28.59 / 0.635
MP-HSIR (Ours) 46.72 / 0.991 36.88 / 0.939 31.14 / 0.843 36.27 / 0.894 31.26 / 0.757 28.38 / 0.630 36.57 / 0.926 32.68 / 0.813 29.92 / 0.690

Table 6. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different downsampling scales
on Super-Resolution tasks. The best and second-best performances are highlighted in red and blue, respectively.

Dataset PromptIR InstructIR PromptHSI MP-HSIR
Urban 14.95 15.56 12.34 11.42
EO-1 17.99 19.71 18.13 16.54

Table 7. No-reference quality assessment on real datasets.

E.2. Model Efficiency

In this section, we present the parameter counts and compu-
tational costs of the all-in-one models for both natural scene
and remote sensing hyperspectral datasets. Notably, the net-

work width for remote sensing datasets is 1.5 times greater
than that for natural scene datasets across all models. As
demonstrated in Table 11, our method achieves a lower pa-
rameter count while maintaining competitive computational
efficiency.

Furthermore, to evaluate the practical inference perfor-
mance, Table 12 reports the average inference time of each
method on remote sensing datasets. Our method maintains a
favorable trade-off between efficiency and accuracy, demon-
strating its suitability for large-scale deployment.



Type Methods

Inpainting (ICVL [1]) Inpainting (Chikusei [39])
Rate = 0.7 Rate = 0.8 Rate = 0.9 Rate = 0.7 Rate = 0.8 Rate = 0.9

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

NAFNet [5] 45.03 / 0.989 44.65 / 0.988 43.50 / 0.985 40.34 / 0.952 40.15 / 0.955 38.97 / 0.952
Restormer [40] 46.51 / 0.991 46.00 / 0.991 44.85 / 0.988 36.52 / 0.902 36.34 / 0.892 36.13 / 0.903
DDS2M [27] 45.41 / 0.989 43.34 / 0.983 37.80 / 0.935 36.77 / 0.906 35.23 / 0.901 32.83 / 0.854
HIR-Diff [29] 41.82 / 0.973 38.87 / 0.949 36.04 / 0.924 38.59 / 0.923 37.96 / 0.920 36.41 / 0.904

All
in

One

AirNet [18] 43.10 / 0.983 43.06 / 0.983 41.65 / 0.977 38.12 / 0.919 37.86 / 0.921 36.39 / 0.918
PromptIR [31] 46.96 / 0.992 46.93 / 0.992 45.24 / 0.988 38.86 / 0.925 38.30 / 0.931 37.05 / 0.934

PIP [22] 44.37 / 0.985 43.47 / 0.983 42.26 / 0.978 38.74 / 0.922 38.58 / 0.930 37.98 / 0.938
HAIR [4] 44.83 / 0.983 44.30 / 0.983 42.92 / 0.981 38.43 / 0.921 38.28 / 0.928 37.43 / 0.932

InstructIR [7] 44.85 / 0.989 44.29 / 0.987 43.08 / 0.983 36.30 / 0.904 36.18 / 0.908 35.84 / 0.909
PromptHSI [17] 42.83 / 0.983 41.72 / 0.976 39.89 / 0.956 38.99 / 0.966 37.64 / 0.952 35.35 / 0.920
MP-HSIR (Ours) 53.06 / 0.997 51.94 / 0.996 49.60 / 0.994 44.75 / 0.981 44.06 / 0.981 42.08 / 0.975

Table 8. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different mask rates on
Inpainting tasks. The best and second-best performances are highlighted in red and blue, respectively.

Type Methods

Dehazing (PaviaU [14]) Dehazing (Eagle [30])
Omega = 0.5 Omega = 0.75 Omega = 1.0 Omega = 0.5 Omega = 0.75 Omega = 1.0

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

SGNet [25] 36.52 / 0.974 34.10 / 0.964 32.22 / 0.949 39.43 / 0.989 37.33 / 0.976 34.90 / 0.962
SCANet [12] 39.01 / 0.986 36.54 / 0.978 34.21 / 0.969 41.92 / 0.991 39.68 / 0.987 37.31 / 0.978

MB-Taylor [32] 40.51 / 0.991 38.03 / 0.984 35.44 / 0.975 43.76 / 0.995 40.97 / 0.992 38.36 / 0.986
DCMPNet [42] 39.63 / 0.993 37.14 / 0.985 34.82 / 0.976 42.93 / 0.995 40.15 / 0.991 37.64 / 0.985

All
in

One

AirNet [18] 38.61 / 0.982 35.65 / 0.967 32.51 / 0.947 41.88 / 0.991 38.68 / 0.982 35.92 / 0.969
PromptIR [31] 40.34 / 0.991 37.43 / 0.983 34.47 / 0.971 43.55 / 0.995 40.69 / 0.992 37.94 / 0.988

PIP [22] 40.30 / 0.991 37.64 / 0.983 34.93 / 0.971 43.21 / 0.994 40.95 / 0.991 38.07 / 0.985
HAIR [4] 39.47 / 0.989 36.79 / 0.980 34.02 / 0.965 43.38 / 0.995 40.54 / 0.992 38.67 / 0.988

InstructIR [7] 38.24 / 0.986 34.57 / 0.974 31.36 / 0.954 40.90 / 0.991 38.07 / 0.985 33.99 / 0.971
PromptHSI [17] 38.62 / 0.982 36.48 / 0.975 35.22 / 0.964 40.88 / 0.986 40.49 / 0.984 37.98 / 0.981
MP-HSIR (Ours) 42.64 / 0.993 39.46 / 0.988 36.68 / 0.978 45.66 / 0.997 42.24 / 0.995 39.34 / 0.992

Table 9. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different haze levels on Dehazing
tasks. The best and second-best performances are highlighted in red and blue, respectively.

Type Methods

Band Completion (ARAD [2]) Band Completion (Berlin [28])
Rate = 0.1 Rate = 0.2 Rate = 0.3 Rate = 0.1 Rate = 0.2 Rate = 0.3

PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑ PSNR / SSIM ↑

Task
Specific

NAFNet [5] 47.82 / 0.996 47.02 / 0.995 46.29 / 0.994 39.71 / 0.972 37.51 / 0.874 37.84 / 0.875
Restormer [40] 49.24 / 0.997 48.29 / 0.995 47.49 / 0.993 34.98 / 0.605 35.24 / 0.606 35.00 / 0.607

SwinIR [23] 50.95 / 0.997 49.80 / 0.995 48.49 / 0.993 36.88 / 0.950 34.69 / 0.855 34.78 / 0.854
MambaIR [10] 51.46 / 0.998 50.32 / 0.995 49.01 / 0.993 37.54 / 0.953 35.38 / 0.857 35.43 / 0.855

All
in

One

AirNet [18] 46.14 / 0.994 45.21 / 0.992 44.46 / 0.990 37.62 / 0.691 35.26 / 0.586 34.86 / 0.595
PromptIR [31] 47.68 / 0.996 46.71 / 0.994 45.41 / 0.992 42.81 / 0.707 39.55 / 0.910 39.00 / 0.640

PIP [22] 48.35 / 0.995 47.37 / 0.994 46.37 / 0.991 38.60 / 0.706 36.58 / 0.657 36.43 / 0.641
HAIR [4] 46.27 / 0.994 44.92 / 0.992 44.04 / 0.990 40.04 / 0.705 36.54 / 0.607 37.45 / 0.639

InstructIR [7] 52.66 / 0.998 51.37 / 0.997 49.90 / 0.996 36.17 / 0.606 35.33 / 0.559 36.40 / 0.576
PromptHSI [17] 49.05 / 0.996 47.09 / 0.993 45.89 / 0.992 47.11 / 0.997 43.14 / 0.973 39.82 / 0.956
MP-HSIR (Ours) 57.83 / 0.999 56.61 / 0.999 54.99 / 0.998 52.14 / 0.999 49.20 / 0.997 47.26 / 0.965

Table 10. [All-in-one] Quantitative comparison of all-in-one and state-of-the-art task-specific methods under different mask rates on Band
Completion tasks. The best and second-best performances are highlighted in red and blue, respectively.
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Params (M) FLOPS (G) Params (M) FLOPS (G)

AirNet [18] 5.82 19.04 12.23 43.79
PromptIR [31] 33.00 10.03 72.60 22.21

PIP [22] 27.80 10.66 58.26 22.08
HAIR [4] 7.68 2.72 17.28 6.46

InstructIR [7] 68.82 2.81 154.03 6.57
PromptHSI [17] 25.90 10.10 50.89 21.91
MP-HSIR (Ours) 13.88 14.40 30.91 32.74

Table 11. Model complexity comparisons

Metric PromptIR InstructIR PromptHSI MP-HSIR
Inference Time (s) 0.087 0.065 0.282 0.083

Table 12. Inference time for remote sensing scenes (64×64×100).

Method PSNR ↑ SSIM ↑ Params (M)

Baseline (Only Spatial SA) 33.78 0.782 20.93

+ Textual Prompt PT 34.53 0.807 21.51

+ Visual Prompt PV 34.47 0.805 23.68

+ Textual Prompt PT + Visual Prompt PV 34.92 0.822 24.26

+ Global Spectral SA + PT + PT 35.20 0.835 30.07

+ Local Spectral SA + PT + PV 35.82 0.846 24.43

+ Local Spectral SA + PT + PV + Spectral Prompt PS 36.67 0.863 25.10

Full Model 37.17 0.874 30.91

Table 13. Ablation study to verify the effectiveness of modules on
Xiong’an dataset in Gaussian denoising task with sigma = 70.

Method PSNR ↑ SSIM ↑ Params (M)

Baseline (Only Spatial SA) 30.10 0.788 20.93

+ Textual Prompt PT 37.64 0.928 21.51

+ Visual Prompt PV 37.42 0.925 23.68

+ Textual Prompt PT + Visual Prompt PV 38.91 0.942 24.26

+ Global Spectral SA + PT + PT 39.20 0.944 30.07

+ Local Spectral SA + PT + PV 39.79 0.948 24.43

+ Local Spectral SA + PT + PV + Spectral Prompt PS 40.51 0.950 25.10

Full Model 41.36 0.952 30.91

Table 14. Ablation study to verify the effectiveness of modules on
Eagle dataset in Gaussian deblurring task with radius = 15.

E.3. More results of Ablation Study
In this section, we present ablation studies on the textual
prompts PT , learnable visual prompts PV , global spec-
tral self-attention, local spectral self-attention, and spectral
prompts PS across multiple tasks, as shown in Tables 13, 14,
and 15. Overall, the addition of each module progressively
improves the two accuracy metrics across all tasks.

E.4. Controllable Results
In this section, we demonstrate the controllable restoration
capability of the proposed method. Specifically, we conduct
controlled restoration tasks under two composite degradation
scenarios: Gaussian noise with Gaussian blur and complex
noise with Gaussian blur, aiming to remove noise while

Method PSNR ↑ SSIM ↑ Params (M)

Baseline (Only Spatial SA) 32.52 0.967 20.93

+ Textual Prompt PT 34.24 0.965 21.51

+ Visual Prompt PV 34.13 0.964 23.68

+ Textual Prompt PT + Visual Prompt PV 34.92 0.969 24.26

+ Global Spectral SA + PT + PT 35.53 0.973 30.07

+ Local Spectral SA + PT + PV 35.64 0.974 24.43

+ Local Spectral SA + PT + PV + Spectral Prompt PS 36.13 0.976 25.10

Full Model 36.68 0.978 30.91

Table 15. Ablation study to verify the effectiveness of modules on
PaviaU dataset in Dehazing task with Omega = 1.0.

Mixed Degradation GTControllable Recovery

Figure 2. Controllable Reconstruction: Removing Gaussian from
Gaussian Noise + Gaussian Blur Degradation.

preserving blur. As illustrated in Figures 2 and 3, our method
can precisely remove specific degradation types through
accurate guidance from textual prompts, highlighting its
controllability and interpretability.

Building on this controllable restoration paradigm, we
further explore sequential degradation removal, where mul-
tiple degradations are addressed step by step under prompt
guidance. As shown in Figure 4, our method achieves supe-
rior results in this more challenging setting, outperforming
other approaches in both visual quality and flexibility.

E.5. More Visual Results

In this section, we present further visual results for each task,
including all-in-one experiments, generalization testing, and
real-world scenarios. As shown in Figures 5, 6, 7, and 8, the
visualization results indicate that our method achieves the
best performance in restoring texture details and structural
features.
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Figure 3. Controllable Reconstruction: Removing Complex Noise
from Complex Noise + Gaussian Blur Degradation.
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Figure 4. Progressive results (ours) and final results (others).
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Input Task-Specific PromptIR GTInstructIR PromptHSI Ours

Figure 5. Visual comparison results of Gaussian denoising, complex denoising, Gaussian deblurring, and super-resolution, including the
corresponding residual maps. Task-Specific represents the optimal task-specific method.
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Figure 6. Visual comparison results of Inpainting, Dehazing, Band Completion, and Motion Deblurring, including the corresponding
residual maps. Task-Specific represents the optimal task-specific method.
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Figure 7. Visual comparison results of Poisson Denoising, including the corresponding residual maps. Task-Specific represents the optimal
task-specific method.
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Figure 8. Visual comparison results of Real Dehazing. Task-Specific represents the optimal task-specific method.
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