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A. Preliminaries on Diffusion Models
Diffusion Models [9] are a class of deep generative models that convert Gaussian noise into structured data samples through
an iterative denoising process. These models typically comprise a forward diffusion process and a reverse denoising process.

Specifically, the forward diffusion process progressively introduces Gaussian noise into an image (x0) via a Markov
process over T steps. Let xt represent the noisy image at step t. The transition from xt−1 to xt can be formulated as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

Here, βt ∈ (0, 1) represents pre-determined hyperparameters that control the variance at each step. By defining αt = 1− βt

and ᾱt =
∏t

i=1 αi, the properties of Gaussian distributions and the reparameterization trick allow for a refined expression:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

This insight provides a concise expression for the forward process with Gaussian noise ϵ as: xt =
√
ᾱtx0 +

√
1− ᾱtϵ.

Diffusion models also encompass a reverse denoising process that reconstructs images from noise. A UNet-based
model [25] is typically utilized to learn the reverse diffusion process pθ, represented as:

pθ(xt−1|xt) = N (xt;µθ(xt, t),Σθ(xt, t))

Here, µθ represents the predicted mean of the Gaussian distribution, derived from the estimated noise ϵθ as:

µθ(xt, t) =
1

√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t))

Building on this foundation, Latent Diffusion Models [24] adopt a Variational Autoencoder (VAE [16]) to project images
into a learned, compressed, low-dimensional latent space. The forward diffusion and reverse denoising processes are then
performed on the latent codes (z) within this latent space, significantly reducing computational cost and improving efficiency.

B. Details of MRGen-DB & Synthetic Data
This section provides additional details about our curated MRGen-DB dataset. In Sec. B.1, we elaborate on the implementa-
tion details of the automatic annotation pipeline; and in Sec. B.2, we present more comprehensive data statistics. Moreover,
in Sec. B.3, we provide statistics on the MRGen-synthesized data used for downstream segmentation models training.

B.1. Automatic Annotations
We employ an automated annotation pipeline to annotate our MRGen-DB dataset, ensuring that the templated text prompts
contain sufficient and clinically relevant information to distinguish distinct modalities, regions, and organs. This process
primarily consists of two precise and controllable components: human body region classification and modality explanation,
which will be detailed as follows.
Region classification. Considering the wide range and variability of abdominal imaging, we adopt the off-the-shelf Biomed-
CLIP [31] image encoder to encode all 2D slices, and the BiomedCLIP text encoder to encode predefined text descriptions
of six abdominal regions. Based on the cosine similarity between the image and text embeddings, the 2D slices are classified
into one of the six categories, including Upper Thoracic Region, Middle Thoracic Region, Lower Thoracic Region, Upper
Abdominal Region, Lower Abdominal Region, and Pelvic Region. For text encoding, we use a templated text prompt as input:

This is a radiology image that shows $region$ of a human body, and probably contains $organ$.

Here, $region$ and $organ$ represent the items in the following list:

(region, organ) = [ (‘Upper Thoracic Region’, ‘lung, ribs and clavicles’), (‘Middle Thoracic Region’, ‘lung, ribs and
heart’), (‘Lower Thoracic Region’, ‘lung, ribs and liver’), (‘Upper Abdominal Region’, ‘liver, spleen, pancreas, kidney
and stomach’), (‘Lower Abdominal Region’, ‘kidney, small intestine, colon, cecum and appendix’), (‘Pelvic Region’,
‘rectum, bladder, prostate/uterus and pelvic bones’) ]

Modality explanation. To capture the correlations and distinctions among various modality labels, we leverage GPT-4 [1]
to generate free-text descriptions detailing the signal intensities of fat, muscle, and water for each modality label. This helps
the model better understand the imaging characteristics of distinct modalities. The prompt we use is as follows:



As a senior doctor and medical imaging researcher, please help me map radiological imaging modalities to the signal
intensities of fat, muscle, and water, as well as their corresponding brightness levels. Please provide the answer in
the following format: fat {} signal, muscle {} signal, water {} signal, fat {}, muscle {}, water {}. Now, tell me the
attributes of $modality$.

To ensure reliability and accuracy, we have randomly and uniformly sampled approximately 2% (5K out of 250K) of region
annotations and 20% (60 out of ∼300) of modality attribute annotations for manual verification, achieving high accuracies of
95.33% and 91.67%. Furthermore, the effectiveness in downstream tasks also validates the quality of automatic annotations.

B.2. Dataset Statistics

In this section, we present more detailed statistics about our curated MRGen-DB dataset, including the unannotated image-
text pairs from Radiopaedia1, as well as the mask-annotated data sourced from various open-source datasets.
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Figure 1. Data Statistics of Radiopaedia-MRI. (a) Distribution of slice counts across various modalities in Radiopaedia-MRI; (b) Propor-
tional distribution of slices across different regions in Radiopaedia-MRI.

Data without mask annotations. For the image-text pairs from Radiopaedia-MRI, which are used for training the autoen-
coder and text-guided generation, we allocate 1% of the data as a test set to evaluate reconstruction and generation perfor-
mance, maximizing the amount of data available for pretraining. As a result, 202,988 samples are used for training, and the
test set consists of 2,051 samples. We conduct a statistical analysis of the distribution of modalities in Radiopaedia-MRI, as
presented in Figure 1 (a). The free-text modality labels cover approximately 300 categories, providing a diverse set of MRI
modalities that form a crucial foundation for MRGen to learn text-guided generation and expand its mask-conditioned gen-
eration capabilities towards modalities originally lacking mask annotations. Furthermore, the distribution of images across
different regions in Radiopaedia-MRI is presented in Figure 1 (b).
Data with mask annotations. Following the SAT [33], we split the data with mask annotations into training and test sets, as
detailed in Table 1. For dataset pairs comprising different datasets, we use their shared organs as the segmentation targets.
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Dataset Organs Modality
Train Test

# Vol. # Slc. # Slc. w/ mask # Vol. # Slc. # Slc. w/ mask

PanSeg [32] Pancreas
T1-weighted 309 14,656 5,961 75 3,428 1,400
T2-weighted 305 12,294 5,106 77 2,982 1,312

MSD-Prostate [3] Prostate
T2-weighted 26 492 100 6 110 83
ADC 26 492 100 6 110 83

CHAOS-MRI [13]
Liver, Right Kidney, T1-weighted 32 1,018 770 8 276 230
Left Kidney, Spleen T2-SPIR 16 503 388 4 120 104

PROMISE12 [17] Prostate T2-weighed 40 1,137 645 10 240 133

LiQA [18] Liver T1-weighted 24 1,718 1,148 6 467 298

Total / / 778 36,710 14,218 192 7,733 3,643

Table 1. Details of Segmentation-annotated Datasets in MRGen-DB. Here, # Vol. represents the number of 3D Volumes, # Slc. denotes
the number of 2D slices, and # Slc. w/ mask indicates the number of 2D slices with mask annotations.

B.3. Synthetic Data Statistics
This section presents the statistics of target-domain training samples synthesized by MRGen across various experimental
settings, as presented in Table 2. Concretely, we use mask annotations from the entire source-domain dataset (including both
training and test sets) as input conditions to generate target-domain images, forming image-mask training pairs. Exceptions
include: (i) for the MSD-Prostate [3] dataset, where images of T2 and ADC modalities have already been registered, we
restrict inputs to the source-domain training set to prevent data leakage; and (ii) for dataset pairs with CHAOS-MRI-T1 [13]
as the target domain, each source-domain mask is used twice to synthesize both T1-InPhase and T1-OutofPhase data. This
setup is consistent across all baselines. Additionally, with our proposed autofilter pipeline, MRGen generates 20 candidate
images per mask and selects the top two that meet the predefined thresholds. If no samples satisfy the thresholds, all thresholds
will be relaxed by 0.10, and the sample of the highest quality is chosen, ensuring full exploitation of source-domain masks.
Otherwise, all low-quality generated samples are discarded to avoid noisy data.

Source Dataset Source Modality Target Dataset Target Modality # Slices (Ds) # Synthetic Data

CHAOS-MRI T1 CHAOS-MRI T2-SPIR 1,294 433
CHAOS-MRI T2-SPIR CHAOS-MRI T1 607 1,118
MSD-Prostate T2 MSD-Prostate ADC 492 775
MSD-Prostate ADC MSD-Prostate T2 492 745

PanSeg T1 PanSeg T2 18,084 2,160
PanSeg T2 PanSeg T1 15,276 2,215
LiQA T1 CHAOS-MRI T2-SPIR 2,185 2,267

CHAOS-MRI T2-SPIR LiQA T1 607 636
MSD-Prostate ADC PROMISE12 T2 602 742
PROMISE12 T2 MSD-Prostate ADC 1,377 1,077

Table 2. Synthetic Data Statistics. Here, # Slices (Ds) denotes the number of source-domain samples under each experimental setting,
which serves as input for translation-based baselines. Moreover, # Synthetic Data represents the total volume of data generated by MRGen.

C. Implementation Details
In this section, we will provide a comprehensive explanation of the implementation details discussed in the paper. Concretely,
Sec. C.1 describes the preprocessing and augmentation strategies applied to the training data. Sec. C.2 elaborates on the
details of the autofilter pipeline. Finally, Sec. C.3 outlines the implementation details of various baselines.

C.1. Preprocessing & Augmentation
Data preprocessing. To ensure consistency across data from various sources and modalities, we apply tailored preprocessing
strategies as follows: (i) For data from Radiopaedia-MRI, the images are directly rescaled to the range [0, 1]; (ii) For MR im-



ages with mask annotations, intensities are clipped to the 0.5 and 99.5 percentiles and rescaled to [0, 1]. After normalization,
all data are subsequently rescaled to [-1, 1] for training various components of MRGen, including the autoencoder, diffusion
UNet, and mask condition controller. For training downstream segmentation models, images are rescaled to [0, 255] and
saved in ‘.png’ format, followed by the official preprocessing configurations of nnUNet [11] and UMamba [20].

Data augmentation. During autoencoder training, we apply random data augmentations to images with a 20% probability.
These augmentations include horizontal flipping, vertical flipping, and rotations of 90◦, 180◦, 270◦. In contrast, no data aug-
mentations are applied during the training of the diffusion UNet and mask condition controller. Our preliminary experiments
show that MRGen remains robust to uneven data distribution; we therefore do not explicitly adopt data balancing in training.
For segmentation models, we adhere to the default data augmentation strategies provided by nnUNet [11] and UMamba [20].

C.2. Autofilter Pipeline

When deploying our proposed data engine, MRGen, to synthesize training data for segmentation models, we adopt the off-the-
shelf SAM2-Large [23] model to perform automatic interactive segmentation on generated images, with the mask conditions
as spatial prompts. Empirically, we observe that SAM2 consistently segments images based on their contours, guided by the
provided spatial prompts. Concretely, it produces high-quality pseudo mask annotations for images with contours closely
matching mask conditions, while performing poorly for synthesized images that deviate significantly from mask conditions.
This characteristic allows our pipeline to automatically filter out samples faithful to the condition masks and discard erroneous
ones, thus ensuring the quality of synthesized image-mask pairs. Here, we elaborate on more implementation details of this
automatic filtering pipeline, particularly focusing on the generation of MR images that encompass multiple organs.

Specifically, we begin by defining the following thresholds: confidence threshold (τconf ), IoU score threshold (τIoU),
average confidence threshold (τ̄conf ), and average IoU threshold (τ̄IoU). Both the controlling mask (M′

t) and the generated
image (I ′

t) are fed into SAM2. For each organ mask M′i
t in M′

t, SAM2 will output a segmentation map with a confidence
score (siconf ), which is then used to calculate the IoU score (siIoU) against M′i

t. For each generated sample (I ′
t), it is regarded

to be high-quality and aligned with the mask condition if the following conditions are satisfied: {siIoU ≥ τIoU, s
i
conf ≥

τconf | ∀i}, and {s̄IoU ≥ τ̄IoU, s̄conf ≥ τ̄conf}. Otherwise, the sample will be discarded.
For each conditional mask, we synthesize 20 image candidates and select the best two that satisfy the predefined thresholds.

Across all experiments, the thresholds are set as follows: τIoU = 0.70, τconf = 0.80, τ̄IoU = 0.80, and τ̄conf = 0.90.

C.3. Baselines

In this section, we introduce the implementation details of representative baselines and discuss other relevant methods by
category. Concretely, we first consider the most related ones, including augmentation-based and translation-based methods.

Augmentation-based methods. These approaches [5, 10, 21, 27, 29, 34] typically rely on mixing multi-domain training data
or employing meticulously designed data augmentation strategies. Here, we consider the representative one, DualNorm [34].
Following its official implementation, we apply random non-linear augmentation on each source-domain image, to generate
a source-dissimilar training sample, and train the dual-normalization model. All preprocessing steps, network architectures,
and training strategies adhere to the official recommendations, with the exception that images are resized to 512 × 512,
consistent with other methods. Notably, we evaluate DualNorm on all slices in the test set, offering a more rigorous evaluation
compared to the official code, which only considers slices with segmentation annotations.

Translation-based methods. These methods [14, 15, 22, 26] are commonly inspired by CycleGAN [35]; therefore, we
compare with open-source CycleGAN [35], UNSB [14], and MaskGAN [22]. We follow their official implementations and
training strategies across all experimental settings. Subsequently, source-domain images are translated into the target domain
and paired with the source-domain masks to create paired samples for training downstream segmentation models.

Moreover, we have also explored other approaches leveraging the progress of generative models.

Generation-based methods. Existing medical generation models [6–8, 28, 30] still struggle with complex and challenging
abdominal MRI generation. For instance, MAISI [7] and Med-DDPM [6] are tailored for CT and brain MRI synthesis,
respectively. To adapt to our task, we finetune MAISI [7] on our data, as a generation-based baseline.

Additionally, we consider other methods aimed at addressing our focused challenge, i.e., segmenting MR images of
underrepresented modalities lacking mask annotations. These include few-shot learning approaches, general-purpose seg-
mentation models, and methods incorporating oracle inputs as performance references. Notably, these approaches, to varying
degrees, rely on manually annotated target-domain segmentation masks or external datasets. Thus, they should be regarded
as references only, rather than fair comparisons with the aforementioned methods and our MRGen.
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Figure 2. Qualitative Results of In-domain Generation.

Few-shot methods. Specifically, we compare with a few-shot nnUNet [11] (pre-trained on source-domain data and finetuned
on 5% target-domain manually annotated data), as well as UniVerSeg [4] with its official implementation and checkpoint.
General segmentation models. We adopt the official code and checkpoint of TotalSegmentor-MRI [2], which has been
trained on extensive manually annotated data and diverse modalities, as a strong general-purpose segmentation baseline.
Models with oracle inputs. We include SAM2-Large [23] as a reference for interactive semi-automatic segmentation, using
randomly perturbed oracle boxes as prompts. To simulate the error introduced by manual intervention, the oracle boxes are
randomly shifted at each corner, by up to 8% of the image resolution, following MedSAM [19]. Segmentation results are
derived in a slice-by-slice and organ-by-organ manner: For each slice with mask annotations, we simulate box prompts for
each annotated organ individually. Finally, we also include nnUNet [11] trained exclusively on the target-domain mask-
annotated dataset (Dt) as an oracle reference, reflecting the performance upper bound with sufficient annotated data.

D. More Experiments
In this section, we present additional experimental results to demonstrate the superiority of our proposed data engine. First, in
Sec. D.1, we showcase quantitative and qualitative results of in-domain generation. Next, in Sec. D.2, we present quantitative
comparisons with more baselines, further confirming the effectiveness and necessity of our proposed data engine. Then,
in Sec. D.3, we present extra promising application prospects (cross-protocol generation) on paired CT and MRI datasets.
Finally, in Sec. D.4, we provide extra qualitative results to validate the accuracy and flexibility of the generated outputs.

D.1. In-domain Generation
Our proposed data engine not only synthesizes images for target modalities lacking mask annotations but also maintains
controllable generation capabilities within the source domains. Moreover, as presented in Table 3, downstream segmentation
models trained exclusively on synthetic source-domain data can achieve performance comparable to those trained on real,
manually-annotated data. This offers a feasible solution to address concerns about medical data privacy.

Dataset
Source

Modality
Target

Modality
Ds Dt

Ds MRGen Ds MRGen Dt

CHAOS-MRI [13]
T1 T2-SPIR 90.60 88.14 4.02 67.35 83.90

T2-SPIR T1 83.90 82.06 0.62 57.24 90.60

Table 3. In-domain & Cross-domain Augmentation Results (DSC score) on Segmentation. We compare the performance of
nnUNet [11] trained on real data versus synthetic data generated by MRGen in both the source domain (Ds) and target domain (Dt).

Moreover, we provide visualizations of in-domain generation in Figure 2, qualitatively demonstrating that our MRGen
can reliably perform controllable generation of a large number of samples within the training domain with mask annotations.

D.2. More Quantitative Results
In this section, we compare MRGen with additional baseline methods on two typical cross-modal dataset pairs from MRGen-
DB by evaluating the performance of downstream segmentation models, as detailed in the main text. Concretely, for both
translation-based and generation-based methods, we assess the performance of nnUNet [11] trained on data generated by
these methods. As depicted in Table 4, we further analyze the relevant baselines by category, as follows.



Dataset Source
Modality

Target
Modality

DualNorm
nnUNet

Ds MRGen CycleGAN UNSB MaskGAN MAISI Few-shot
UniVerSeg TS-MRI Oracle

Box SAM2 nnUNet
Dt

CHAOS-MRI
T1 T2-SPIR 14.00 6.90 66.18 7.58 14.03 32.73 3.34 52.00 48.91 80.64 45.45 53.12 83.90

T2-SPIR T1 12.50 0.80 58.10 1.38 6.44 1.89 3.11 53.82 52.79 77.09 43.48 51.94 90.60

MSD-Prostate
T2 ADC 1.43 5.52 57.83 40.92 52.99 29.14 9.15 20.28 0.0 0.0 61.50 65.39 82.35

ADC T2 12.94 22.20 61.95 57.06 38.39 5.98 6.94 29.38 53.90 0.0 61.07 66.40 89.80

Average DSC score 10.22 8.86 61.02 26.74 27.96 17.44 5.64 38.87 38.90 39.43 52.88 59.21 86.66

Table 4. More Quantitative Results (DSC score) on Segmentation. The best and second-best performances are bolded and
underlined, respectively. Notably, the results marked with a gray background indicate that the corresponding methods may have ac-
cessed target-modality annotated data during extensive training (e.g., UniVerSeg, TotalSegmentor-MRI (TS-MRI)), utilized oracle inputs as
prompts (e.g., Oracle Box, SAM2), or even been directly trained on target-modality annotated data (e.g., nnUNet (Few-shot), nnUNet (Dt)).
Consequently, these approaches do not represent a fully fair comparison with others, and are primarily included as performance references.

Augmentation-based methods. Limited to relying on carefully crafted augmentation strategies, DualNorm [34] fails to
model nonlinear visual discrepancies among distinct modalities, leading to poor cross-modality segmentation performance.
Translation-based methods. While CycleGAN [35], UNSB [14], and MaskGAN [22] excel at contour preservation, they
often suffer from model collapse when learning complex modality transformations, resulting in suboptimal performance.
Generation-based models. Despite finetuned on our dataset, the performance of MAISI [7] is still poor, which we attribute
to its lack of modality-conditioning capability. This limitation hinders its ability to support cross-modality generation, and
consequently, makes it struggle to synthesize target-domain samples for training segmentation models.
Few-shot methods. While few-shot nnUNet [11] and UniverSeg [4] benefit from partial target-domain annotations, MRGen-
boosted models outperform without requiring any such annotations, showcasing practical feasibility in clinical scenarios.
General segmentation models. TotalSegmentor-MRI [2] works well on certain datasets/modalities (likely already included
during training), but it still performs poorly or even fails on others. This significantly limits its practicality in complex
clinical scenarios, especially when dealing with underrepresented modalities with diverse imaging characteristics.
Models with oracle inputs. Although SAM2 [23] with perturbed oracle boxes as prompts exhibits impressive zero-shot
segmentation capabilities, our MRGen-boosted models still outperform it, trailing only the oracle nnUNet trained directly on
target-domain annotated data. Moreover, as a semi-automatic method, SAM2’s reliance on high-quality spatial prompts and
manual intervention limits its scalability and applicability, while MRGen offers a fully automated, end-to-end solution.

Overall, MRGen provides a robust, fully automated approach for challenging cross-modality segmentation by producing
high-quality synthetic data, with no need for any target-domain mask annotations and proving highly suitable for clinical
applications. For computational efficiency, we primarily focus on comparing MRGen with some representative baselines,
DualNorm [34], CycleGAN [35] and UNSB [14], across more dataset pairs in the main text for a comprehensive evaluation.

Source
Domain

Target
Domain

DualNorm
nnUNet UMamba

Ds CycleGAN MRGen Ds CycleGAN MRGen

AMOS22 (CT) CHAOS (T2) 19.78 0.11 6.75 22.50 0.05 8.06 26.73
AMOS22 (CT) CHAOS (T1) 16.09 8.88 52.49 56.23 3.19 43.21 60.53

MSD-Liver (CT) CHAOS (T2) 1.58 3.12 10.14 38.67 1.65 11.06 40.93

Table 5. Quantitative Results (DSC score) on Cross-protocol settings (from CT to MRI).

D.3. Extension to More Modalities
Considering that evaluation on truly rare modalities is difficult due to limited ground truth annotations, we simulate such sce-
narios by restricting models from accessing target-modality labels in our experiments. Here, we also explore cross-modality
synthesis (from CT to MRI) with AMOS22 [12], MSD-Liver [3], and CHAOS-MRI [13] datasets to further demonstrate
MRGen’s potential for broader cross-protocol generation, as depicted in Table 5.

D.4. More Qualitative Results
In this section, we provide qualitative visualizations of more datasets, covering both image generation and segmentation.
Image generation. We present extra visualizations of controllable generation on target modalities lacking mask annotations
in Figure 5, which demonstrate that our MRGen can effectively generate high-quality samples based on masks across various
datasets and modalities, facilitating the training of downstream segmentation models towards these challenging scenarios.



Image segmentation. As presented in Figure 6, we provide more visualizations of segmentation models trained using
synthetic data on modalities that originally lack mask annotations. This validates that the samples generated by MRGen can
effectively assist in training segmentation models, achieving impressive performance in previously unannotated scenarios.

(a) MRGen stuggles with extremely small organ masks

Source-domain
T1 image

Ground Truth
mask annotation

Target-domain T2-SPIR image
synthesized by our MRGen

Source-domain
T1 image

Ground Truth
mask annotation

Target-domain T2-SPIR image
synthesized by our MRGen

(b) MRGen occasionally outputs false-negative samples

Figure 3. Failure Cases Analysis. Our proposed MRGen is not without limitations: (a) it may struggle to handle extremely small organ
masks; (b) it occasionally produces false-negative samples, such as the unexpected synthesis of kidneys in the given example.

E. Limitations & Future Works
E.1. Limitations
Our proposed data engine, MRGen, is not without its limitations. Specifically, MRGen encounters difficulties when generat-
ing conditioned on extremely small organ masks and occasionally produces false-negative samples.
Extremely small organ masks. The morphology of the same organ, such as the liver or spleen, can vary significantly across
different slices of a 3D volume, resulting in significant variability in their corresponding masks. Furthermore, the distribution
of these masks is often imbalanced, with extremely small masks being relatively rare. When generating in the latent space,
these masks are further downsampled, leading to unstable generation quality, as depicted in Figure 3 (a). A feasible solution
to mitigate this issue is to increase the amount of data with mask annotations, thereby improving the model’s robustness.
False-negative samples. Another challenge arises from the varying number of organs on each slice. For instance, one slice
may contain liver, kidneys, and spleen, while another may include only liver and spleen. This variability causes MRGen
to occasionally generate targets not specified in the mask condition. As depicted in Figure 3 (b), kidneys are unexpectedly
synthesized, despite not being included in the mask conditions, leading to false negatives during the training of downstream
segmentation networks. A feasible solution is to design a more robust data filtering pipeline to filter false-negative samples,
and simple manual selection can also serve as a quick and effective method to remove the non-compliant samples.

1 2

3 4

Text-guided Mask-conditioned1 2 3

T11 2 3

Mask-conditioned1 2 3

T2-SPIR1 2 3

Figure 4. The validation of 3D extension feasibility of MRGen on 256× 256× 16 volumes.

E.2. Future Works
Due to limited computational resources, we validate our data engine on 2D slices, with trained segmentation models able to
process 3D volumes slice-by-slice. However, our idea can be seamlessly extended to 3D volume generation with more com-
puting in the future to further advance cross-modality segmentation performance. Here, we provide a preliminary validation
on 256× 256× 16 volumes, as depicted in Figure 4. While the results are not fully optimized due to limited computations,
they already demonstrate promising inter-slice consistency, indicating the feasibility of extending MRGen to 3D synthesis.

Moreover, to address the aforementioned limitations of MRGen, we propose several directions for future improvement:
(i) Constructing more comprehensive and richly annotated datasets, such as incorporating more annotated MRI data, to
enhance the model’s ability to effectively utilize mask conditions; (ii) Designing finer-grained and efficient generative model
architectures to improve generation efficiency and accuracy, particularly for small-volume organs; and (iii) Developing a
more robust data filtering pipeline to reliably select high-quality samples that meet the requirements of downstream tasks.
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Figure 5. More Qualitative Results of Controllable Generation. We present images from source domains (Ds) and target domains (Dt)
for reference. Here, specific organs are contoured with colors: prostate in MSD-Prostate and PROMISE12 datasets, and pancreas in PanSeg
dataset, and liver in LiQA and CHAOS-MRI datasets.
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Figure 6. More Qualitative Results on Segmentation towards Unannotated Modalities. Significant imaging differences between
source-domain (Ds) and target-domain (Dt) make segmentation on target domains (Dt) extremely challenging. Here, specific organs are
highlighted with colors: prostate in MSD-Prostate and PROMISE12, pancreas in PanSeg, and liver in LiQA and CHAOS-MRI datasets.
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