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7. An Example Where Downsampling Breaks
Rotation Equivariance

In Sec. 3.2, we describe how conventional downsampling
layers can break strict rotation equivariance. This occurs be-
cause the center sampling points of the convolution kernels
do not match before and after rotation on even-sized feature
maps, as illustrated in the left part of Fig. 7. The grid illus-
trates the padded feature map and the orange-highlighted
pixel represents the convolution kernel’s center sampling
point.

For example, consider a clockwise 90-degree rotation.
Define a grayscale image as a matrix, assuming the image
has a size of 2n × 2n. Let x represent the column index
and y represent the row index, 1 ≤ x, y ≤ 2n, x, y ∈ Z.
When performing downsampling on the image using a con-
volutional kernel with a stride of 2, the coordinates of the
sampling points are as follows:

(x, y) = (2i+ 1, 2j + 1), i, j ∈ [0, n− 1]. (6)

If f represents the grayscale value of a pixel in the image
at a certain coordinate, after rotating the image 90 degrees
clockwise, the relationship between the coordinates (x′, y′)
of the rotated pixel and the original pixel coordinates is
given by:

f(x′, y′) = f(2n− y + 1, x). (7)

Similarly, after rotating the image 90 degrees clockwise, if
a stride-2 convolution kernel is used for downsampling, the
coordinates of the sampling points in the rotated image are
given by:

(x′, y′) = (2i+ 1, 2j + 1), i, j ∈ [0, n− 1]. (8)

By substituting the corresponding relationships from Eq. (7)
into Eq. (8), the coordinates of the sampling pixel points in
the rotated image can be expressed in terms of their original
coordinates as:

(x, y) = (2j + 1, 2n− 2i), i, j ∈ [0, n− 1]. (9)

From the differences between Eq. (6) and Eq. (9), it can be
observed that the row indices of the sampling points before
rotation are all odd, while the row indices of the sampling
points after rotation are all even. The difference in sampling
points leads to varying convolution results for the same con-
volution kernel on the same feature map, which breaks strict
rotation equivariance.
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Figure 7. Breaking and maintaining strict rotation equivariance.
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Figure 8. Rotation-Equivariant Channel Attention Mechanism.

To address this issue, we ensure strict rotation equivari-
ance by using odd-sized inputs for all 2x downsampling lay-
ers, which preserves the alignment of convolution kernel
center points before and after rotation, as illustrated in the
right part of Fig. 7. The theoretical proof, as shown in Sec-
tion 3.2 of [16], establishes that, to maintain strict rotation
equivariance, the input size i, kernel size k, and stride s of
a downsampling layer—regardless of whether it is a convo-
lutional layer or a pooling layer—must satisfy the condition
(i − k) mod s = 0. Notably, the downsampling method
proposed in this study adheres to this condition.

8. The Further Details of MessDet

This paper introduces the rotation-equivariant channel at-
tention (RE-CA), enabling rotation-equivariant networks to
be implemented with more advanced network structures.
The mathematical formulation of RE-CA is provided in
Sec. 4.2, and its schematic diagram is shown in Fig. 8.
In the figure, ”Squeeze” refers to the global average pool-
ing process, and ”Excitation” refers to the fully connected
layer and activation function. After obtaining the C/N -
dimensional weight vector, each component of the vector is
repeated N times to obtain the N -dimensional weight vec-
tor that preserves rotation equivariance.



Method #P↓ mAP↑ PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC
Two-stage
SCRDet[56] 41.9M 72.61 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21
CSL[55] 37.4M 76.17 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93
ReDet[20] 31.6M 80.10 88.81 82.48 60.83 80.82 78.34 86.06 88.31 90.87 88.77 87.03 68.65 66.90 79.26 79.71 74.67
DODet[6] - 80.62 89.96 85.52 58.01 81.22 78.71 85.46 88.59 90.89 87.12 87.80 70.50 71.54 82.06 77.43 74.47
AOPG[5] - 80.66 89.88 85.57 60.90 81.51 78.70 85.29 88.85 90.89 87.60 87.65 71.66 68.69 82.31 77.32 73.10
LSKNet[29] 31.0M 81.64 89.57 86.34 63.13 83.67 82.20 86.10 88.66 90.89 88.41 87.42 71.72 69.58 78.88 81.77 76.52
Single-stage
R3Det[57] 41.9M 76.47 89.80 83.77 48.11 66.77 78.76 83.27 87.84 90.82 85.38 85.51 65.57 62.68 67.53 78.56 72.62
CFA[19] - 76.67 89.08 83.20 54.37 66.87 81.23 80.96 87.17 90.21 84.32 86.09 52.34 69.94 75.52 80.76 67.96
SASM[23] - 79.17 89.54 85.94 57.73 78.41 79.78 84.19 89.25 90.87 58.80 87.27 63.82 67.81 78.67 79.35 69.37
S2Net[21] - 79.42 88.89 83.60 57.74 81.95 79.94 83.19 89.11 90.78 84.87 87.81 70.30 68.25 78.30 77.01 69.58
R3Det-GWD[58] 41.9M 80.23 89.66 84.99 59.26 82.19 78.97 84.83 87.70 90.21 86.54 86.85 73.47 67.77 76.92 79.22 74.92
RTMDet[35] 52.3M 80.54 88.36 84.96 57.33 80.46 80.58 84.88 88.08 90.90 86.32 87.57 69.29 70.61 78.63 80.97 79.24
R3Det-KLD[59] 41.9M 80.63 89.92 85.13 59.19 81.33 78.82 84.38 87.50 89.80 87.33 87.00 72.57 71.35 77.12 79.34 78.68
Appr. MessDet 15.3M 80.36 88.45 85.50 59.10 81.51 79.97 84.49 88.32 90.89 87.39 87.20 69.55 69.63 78.16 81.96 73.23
Str. MessDet 18.1M 81.07 88.40 86.54 60.84 82.71 81.41 85.64 88.99 90.89 88.58 88.05 71.42 68.41 83.78 80.94 69.50

Table 7. Comparison with state-of-the-art methods on the DOTA-v1.0 dataset [15] with multi-scale training and testing. The mAP in
parentheses refers to the COCO-style mAP.

C

N

H

W

C/N

Rearrange

…

…

12…N

……

…

=

=

Figure 9. Illustration of Feature Rearrangement.

In the head network of MessDet, features with inher-
ent group properties from different orientations are fed to
different branches. To achieve this, the features are rear-
ranged along the channel dimension. The rearrangement
process is shown in Fig. 9. For a rotation-equivariant fea-
ture, X ∈ RC×H×W , where the feature map index of a cer-
tain channel is c, channels with the same remainder when
dividing c by N are grouped together, thus grouping the
channels generated by convolution kernels in different ori-
entations.

9. Experiments Details and The Further Ex-
periments

Our model is implemented using the MMYOLO [11] and
MMRotate [64] frameworks and trained for 36 epochs on
DOTA-v1.0, DOTA-v1.5 and DIOR-R. During training, we
followed most mainstream methods [1, 20, 29, 51] by em-

MessDet(without head) Strictly mAP COCO-mAP

on DOTA-v1.0 ✓ 78.51 51.96
✗ 78.15 51.58

on DOTA-v1.5 ✓ 72.42 46.02
✗ 71.26 43.54

Table 8. Performance comparison of MessDet with two downsam-
pling methods on DOTA-v1.0 and DOTA-v1.5.

Method FLOPs(G) FPS (img/s) Training Time(H)
Str. MessDet 570 25.4 10.5

Appr. MessDet 378 38.2 7.7

Table 9. Information on Inference Speed, Training Time, and
FLOPs.

ploying random rotation and random flipping to prevent
over-fitting. The AdamW [34] optimizer is used with a base
learning rate of 0.00025, weight decay of 0.05, and momen-
tum of 0.9. The learning rate is gradually reduced to 1/20
of the base learning rate over the last half epochs using a
cosine learning schedule. The experiments are conducted
on 4 RTX 3090 GPUs with a batch size of 8. Following
the exploration of ReDet [20] and FRED [26], this study set
N , the number of orientation dimensions for the rotation-
equivariant features in MessDet, to 8.

Here we adopt both single-scale and multi-scale training
strategies. For single-scale training and testing on DOTA-
v1.0 and DOTA-v1.5, we crop the original images into
1024×1024 patches with a stride of 824, yielding a pixel
overlap of 200 between adjacent patches. For multi-scale
training and testing, we first resize the original images to
three scales (0.5, 1.0, and 1.5), and then crop them into
1024×1024 patches with a stride of 524, resulting in an
overlap of 500 pixels.



Further Ablation Study on Rotation-Equivariant
Downsampling. To further verify the performance gains
brought by strictly equivariant downsampling, we con-
ducted ablation experiments on the DOTA-v1.5 dataset us-
ing MessDet without the multi-branch head, and reported
the COCO-style mAP, as shown in Tab. 8. It can be ob-
served that, since the model performance on DOTA-v1.0
has reached a bottleneck in recent years, Str. MessDet
shows only marginal improvement over its approximate
counterpart. However, on the more challenging DOTA-v1.5
dataset, Str. MessDet achieves a significantly larger perfor-
mance gain compared to Appr. MessDet.

Main Results with Multi-Scale Training on DOTA-
v1.0. We also conducted multi-scale training experiments
on the DOTA-v1.0 dataset for reference. Str. MessDet out-
performs Appr. MessDet by 0.7 mAP, as shown in Tab. 7

Information on Inference Speed, Training Time, and
FLOPs. We provide the relevant metrics in Tab. 9 for ref-
erence, based on DOTA-v1.0 with 4 RTX 3090 GPUs for
single-scale training and a single RTX 3090 GPU for infer-
ence. The FLOPs are calculated based on an input image
size of 1024×1024.


