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This material includes the following parts:
• Sec. 1 demonstrates the necessity and significance of this

work.
• Sec. 2 derives the proof for the standard deviation upper-

bound mentioned in the main paper.
• Sec. 3 discusses the related works.
• Sec. 4 describes the details of three data processing strate-

gies used in our experiments.
• Sec. 5 provides the detailed experimental settings, includ-

ing the datasets and settings used during training and eval-
uation, and the baseline methods for comparison.

• Sec. 6 shows the robustness of our method on different
data filtering ratios.

• Sec. 7 provides more experiments beyond the main paper,
including results on BLIP and LLaVA model, and the
comparison on larger-scale dataset LAION.

• Sec. 8 and 9 present the impact and limitation of this paper.

1. Necessity & Significance of This Work
We believe our work has significance in problem formulation,
method design, and outcomes.
(1) Problem significance: Although it may be obvious that
the alignment score for each image-text pair will be differ-
ent when measured with different models (score disparity),
the degree of score disparity and its serious impact on sub-
sequent data processing and model learning have not been
investigated. Thus, most existing works still use a single
quality score to process image-text pair data, which may
lose valuable data and retain noisy data due to the bias of
single scoring model. To our best knowledge, our paper
presents the first comprehensive study on score disparity and
its impacts. We show that no single score excels across all
evaluation tasks and different scores have complementary
effects. We believe this will inspire further research to scale
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up high-quality image-text data collection especially consid-
ering our work has achieved notable improvements.
(2) Method design significance: Motivated by investigation,
we present the method to heuristically calculate a more re-
liable score from the distribution of multiple scores based
on density and deviation, which is the first to extract the
essence and eliminate biases of multiple scores. Our method
is scalable due to its high efficiency (refer to Sec.4.2 in the
main paper). We shall release codes to contribute community
to amplify its impacts.
(3) Outcomes significance: We show that our method not
only enhances the accuracy of image-text pair quality evalu-
ation (refer to Sec.4.1.1 in the main paper) but also signifi-
cantly improves the performance on downstream tasks, for
example, +4.3 and +3.2 on Flickr30K image-text retrieval.

2. Derivation for Upper Bound of the Standard
Deviation

Considering a set of quality scores tS1, ..., SMu, each of
which is normalized within [0, 1], their standard deviation

can be formulated as σ “

b

1
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k denotes the mean value. Now, we target
deriving the upper bound of σ.
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Thus, we can know that

EpZ2q ď
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4
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Therefore, since variance remains invariant under the
addition of a constant, we can write that
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Also, we observe that if we define Sk “ a with probabil-
ity of 0.5 and Sk “ b also with probability of 0.5, then,
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The above shows that the upper-bound σ2 ď
pb´aq

2

4 “ 1
4

can be achieved by a valid distribution. Therefore, we have
σ ď 1

2 , that is, the upper-bound of σ is 0.5.

3. Related Work
3.1. Vision-Language Pre-training
Vision-language pre-training (VLP) aims to derive common
knowledge from large amounts of image-text data and de-
velop a vision-language foundation model that generalizes
well on various vision and linguistic tasks.

The pioneering works CLIP [1] and ALIGN [2] employed
a dual-encoder architecture with a contrastive objective to
learn aligned cross-modal representations from large-scale
noisy image-text pairs crawled from the web, and achieved
remarkable performance on zero-shot transferability for var-
ious downstream tasks. Subsequent works further enhanced
the contrastive paradigm through various training objectives
[3–7] and additional text decoder enabling the text genera-
tion ability [7, 8].

Recently, with the rise of large language models (LLM)
[9–12], researchers began to incorporate the extensive knowl-
edge of LLM with the vision-language model. These models
are generally pre-trained on massive image-text pairs to learn
an intermediate network that bridges the gap between the
embedding space of the pre-trained vision encoder and LLM
[13–15].

Our MoS can be applied on both classic models (such as
CLIP [1] and BLIP [7]) and recent advanced models (such
as LLaVA [15]).

3.2. Image-text Data Quality Metric
With the increasing prevalence of data collection from the In-
ternet, the evaluation of data quality has become increasingly
important.

The quality of image-text pair data is commonly assessed
by examining the consistency between the visual content of
the image and its text description. In the early stages, re-
searchers relied on manual metrics for evaluation, including
human judgement [16], fixed rules and heuristics [17, 18].
Since the advent of dual-encoder vision-language models
(VLM) [1, 6, 7, 13] with aligned visual and linguistic em-
bedding space, model-based metrics have gained significant
popularity, where the quality of image-text data is measured
by the similarity between the image embedding and text
embedding extracted from the VLM.

Among these metrics, CLIP-Score [19] stands out as
the most widely used. It has been applied in the data pro-
cessing for various well-known datasets [20–22] and vision-
language models [23, 24]. Furthermore, the follow-up works
of CLIP [1], such as EVACLIP [6], BLIP [7], BLIP2 [13],
etc., can also be employed to obtain this quality metric based
on feature similarity, following the same principle as CLIP-
Score.

In contrast, our paper is the first to reveal a phenomenon:
existing model-based quality scores are significantly different
from each other, which further leads to the serious disparity
in the performance of model trained with dataset processed
by distinct scores due to their inherent bias.

4. Image-Text Data Processing Strategies

Data filtering. Data filtering is an intuitive and popular
way to avoid the detrimental impact of noise data, which
concentrates on removing a set of low-quality data from
the training set. In our experiments, given multiple quality
scores from different scoring models, we select ρ% lowest
quality data as the filtered data individually based on each
quality score.
Sample weighting. Sample weighting aims to prevent the
model from over-fitting noisy data during learning by ad-
justing the contribution of clean and noisy samples to the
loss. Particularly, it assigns an individual weight to each data
according to the quality of the data. Lower-quality data has a
smaller loss weight. In our experiments, for each image-text
pair, we use the normalized quality score (ranging from 0 to
1) as its loss weight.
Image re-captioning. Image re-captioning is a recently
popular data processing strategy to cope with noisy image-
text pair data. Image re-captioning is a recently popular data
processing strategy to cope with noisy image-text pair data.
It utilizes a powerful image captioning model to synthesize
a new caption for the image, and then replace the original
web text with this synthetic caption. Generally, compared



with the web text, the synthetic caption is more consistent
with the visual content of image. In our experiments, given
multiple quality scores from different scoring models, we
select ρ% lowest quality data for re-captioning individually
based on each quality score.

5. Experimental Settings

5.1. Training

Vision-language models. Our experiments are mainly con-
ducted on the well-known and foundational CLIP [1] model
with ViT-B/32 [25] as the image encoder. In addition, we
also experiment on some more recent models, including
BLIP [7] and LLaVA [15] model.

Datasets. We conduct experiments on two image-text pair
datasets with different sizes (3M and 100M), respectively.
• CC3M [17]. It was collected from 5 billion web pages,

and public by Google in 2018. It contains 3,318,333 image-
text pairs, where the image descriptions are obtained from
the HTML alt-text attribute. Unfortunately, around 0.5M
images are inaccessible due to the broken image links, so
we finally collected around 2.8M image-text pairs for our
experiments in vision-language pre-training.

• LAION [22]. LAION-400M is an open-source dataset
containing 400 million image-text pairs, scraped from the
internet. We randomly selected 100M data from LAION-
400M for experiments due to the limitations of our GPU
resources. This 100M subset is referred to as LAION-
100M in the following text.

Training settings. All the experiments are conducted on
16 NVIDIA V100 GPUs. The settings vary from different
vision-language models. We follow most of the settings
provided in their original paper.
• The CLIP model [1] is trained for 32 epochs with AdamW

[26] optimizer, weight decay 0.2, and a batch size of 2048.
After one warmup epoch, the learning rate gradually de-
creases from 1e-4 following the cosine strategy.

• For BLIP model [7], we train it for 20 epochs with a batch
size of 1260 and AdamW optimizer. The weight decay is
set to 0.05. The initial learning rate is 3e-4 and linearly
decreases with a rate of 0.85.

• For LLaVA model [15], we follow the original settings.
The model is pre-trained for 1 epoch with AdamW opti-
mizer and a batch size of 256. The learning rate decreases
from 1e-3 via the cosine strategy. The weight decay is set
to zero.

5.2. Evaluation
We perform evaluation across a wide range of vision-
language benchmarks under zero-shot setting, including clas-
sification, retrieval, generation, and grounding tasks.

For the zero-shot classification, we evaluate the model on
four well-known benchmarks, including e.g., ImageNet-1K
[16], ImageNet-R [27], CIFAR100 [28] and VOC2007 [29].
We report the top-1 accuracy (denoted as “Acc@1”).

For the image-text retrieval task, it contains two sub-
tasks, e.g., image-to-text (I2T) retrieval and text-to-image
(T2I) retrieval. We report the Recall@1 (denoted as “R@1”)
on two widely-used benchmarks, e.g., Flickr30K [30] and
MSCOCO [31].

For the generation task, we consider three sub-tasks in-
cluding image captioning, visual reasoning and visual ques-
tion answering. For image captioning, we evaluate the mod-
els on two mainstream benchmarks (NoCaps [32] and COCO
Caption [33]) and report the CIDEr [34] metric. For visual
reasoning, models are evaluated on NLVR dataset [35] with
accuracy metric. For visual question answering, we report
the accuracy on the classical VQA dataset [36].

For the grounding task, we evaluate the models on the
commonly-used RefCOCO+ dataset [37] and report the ac-
curacy.

6. Robustness on Different Data Filtering Ratios
To study whether our MoS is robust enough to the data
filtering ratio, we compare the performance of models trained
on the filtered LAION-100M dataset under three kinds of
data filtering ratios (10%, 20% and 30%). As shown in Table
5 and Table 2, our MoS still outperforms any single baseline
quality score and the naive average ensemble strategy under
all these filtering ratios (10%, 20% and 30%).

Our comparisons were restricted to filtering ratios of 30%
or less, since models trained on LAION-100M with higher
filtering ratios showed degraded performance compared to
models trained on unfiltered data. This may be because
the negative impact of reducing the amount of data has out-
weighed the positive impact of removing noisy data.

Quality Score NoCaps COCO Caption
Type Scoring Model CIDEr CIDEr

CLIP
Score

ViT-B/32 105.8 133.5
ViT-B/16 104.2 134.8
ViT-L/14 107.7 131.4

EVACLIP
Score

ViT-L/14 107.0 132.6
ViT-G/14 107.4 134.2

BLIP
Score

ViT-B/16 pt 108.0 137.4
ViT-B/16 ft 107.9 137.7
ViT-L/16 pt 107.5 137.5
ViT-L/16 ft 108.9 138.0

BLIP2
Score

ViT-G/14 pt 106.5 137.0
ViT-G/14 ft 108.3 138.2

MoS (Ours) All of above 110.8 139.4

Table 1. Comparison on the performance of LLaVA model trained
on the CC3M dataset [17] via different quality scores. The model
is pre-trained using sample weighting strategy.



Data Filtering
Ratio

Quality Score Flickr30K MSCOCO ImageNet-1K ImageNet-R CIFAR100 VOC2007
Type Scoring Model I2T R@1 T2I R@1 I2T R@1 T2I R@1 Acc@1 Acc@1 Acc@1 Acc@1

0% - - 70.2 53.7 35.5 31.3 61.1 62.0 60.3 65.9

20%

CLIP
Score

ViT-B/32 75.9 55.4 39.5 34.0 64.0 65.7 62.0 68.2
ViT-L/14 75.6 55.9 40.1 33.9 63.9 65.2 62.2 68.0

EVACLIP
Score

ViT-L/14 75.7 55.6 39.8 34.6 63.7 65.4 61.8 68.6
ViT-G/14 76.6 56.4 39.3 34.0 64.1 64.6 61.4 69.3

BLIP
Score

ViT-B/16-pt 76.4 56.8 40.4 34.5 63.8 64.9 61.6 66.0
ViT-L/16-ft 77.9 57.0 40.0 34.6 63.5 64.3 61.2 66.4

BLIP2
Score

ViT-G/14-pt 78.5 57.5 39.8 35.3 63.3 65.1 61.8 67.5
ViT-G/14-ft 78.1 57.1 40.6 35.2 63.0 64.3 60.5 66.6

MoS (Ours) All of above 79.8 58.4 41.5 35.9 65.0 66.2 63.0 70.8

30%

CLIP
Score

ViT-B/32 76.4 56.0 39.7 34.3 63.8 66.0 62.4 68.7
ViT-L/14 75.9 56.5 40.0 34.0 63.5 65.3 62.5 68.4

EVACLIP
Score

ViT-L/14 76.5 56.2 40.2 34.4 64.0 65.6 61.8 68.5
ViT-G/14 76.8 57.0 39.6 34.5 64.6 64.5 61.3 69.5

BLIP
Score

ViT-B/16-pt 77.0 57.3 40.5 34.7 63.8 65.2 61.8 66.3
ViT-L/16-ft 78.4 56.9 40.3 34.6 63.6 64.8 61.5 66.8

BLIP2
Score

ViT-G/14-pt 79.2 57.9 39.9 35.5 63.5 65.1 62.0 67.9
ViT-G/14-ft 78.8 56.9 40.4 35.4 63.1 64.6 60.5 67.0

MoS (Ours) All of above 81.0 59.2 42.0 36.4 65.3 66.8 63.3 71.4

Table 2. Comparison under different data filtering ratios (20% and 30%). All the experiments are conducted on CLIP (ViT-B/32) model,
trained on filtered LAION-100M dataset using different quality scores. Note that the first line in this table denotes the performance without
data filtering. For the comparison under filtering 10% data, please see Table 5.

Quality Score Flickr30K MSCOCO ImageNet-1K ImageNet-R VQA NLVR COCO Caption RefCOCO+
Type Scoring Model I2T R@1 T2I R@1 I2T R@1 T2I R@1 Acc@1 Acc@1 Acc Acc CIDEr Acc

- - 69.4 57.0 40.3 29.5 58.2 62.6 69.3 74.6 118.0 69.6

CLIP
Score

ViT-B/32 72.4 59.0 41.2 30.5 61.0 65.8 71.0 74.8 118.1 69.8
ViT-L/14 73.5 59.2 42.1 31.5 60.9 66.2 71.5 75.1 118.7 70.3

EVACLIP
Score

ViT-L/14 73.0 60.2 41.7 31.5 60.5 65.8 71.3 75.8 118.0 70.5
ViT-G/14 74.5 60.1 42.0 31.5 61.0 66.1 70.3 75.3 119.2 70.9

BLIP
Score

ViT-L/16-pt 75.2 60.3 42.3 31.0 60.5 65.0 70.0 75.0 118.7 72.0
ViT-L/16-ft 75.3 60.5 43.0 32.5 60.8 65.8 71.1 75.9 119.9 71.7

BLIP2
Score

ViT-G/14-pt 75.5 60.2 43.6 32.5 60.5 65.4 69.4 74.6 119.4 72.7
ViT-G/14-ft 75.0 59.8 43.2 32.2 60.0 65.0 69.9 75.2 119.5 73.4

MoS (Ours) All of above 77.0 61.3 44.5 33.7 62.0 67.5 73.8 77.0 123.5 75.2

Table 3. Comparison on the performance of BLIP-Base model trained on CC3M dataset [17] processed by data filtering strategy. We filter
out 10% lowest-quality data based on each quality score. The first line in this table denotes the performance of model trained on full CC3M
dataset without any data filtering.

7. More Experiments

In this section, we provide some important experiments be-
yond the main paper.

7.1. Results on LLaVA Model

We also conduct experiments on a more modern vision-
language model, LLaVA [15], and observe similar quality
score disparity and corresponding model performance dis-
parity phenomena. We pretrain LLaVA model under sample
weighting strategy where the weight of each data is deter-
mined by different quality scores. As shown in Table 1, our
MoS is still better than each of single baseline quality scores.

7.2. Results on BLIP Model

We report the results on BLIP model Table 3. For zero-shot
classification and retrieval tasks, our MoS shows consistent
advantages when training BLIP model with around 2 points.

For VQA task, our MoS has an advantage of +3.4 com-
pared with the average ensemble strategy. When compared
with single baseline quality scores, our MoS is +3.2 better
than the average performance of all the baseline scores and
+2.3 better than the best one among all the baseline scores
on VQA dataset. For the visual reasoning task, our MoS out-
performs the best baseline quality score by +1.1 on NLVR
dataset, and the average performance of all baseline quality



Data
Processing

Quality Score Flickr30K MSCOCO ImageNet-1K ImageNet-R CIFAR100 VOC2007
Type Scoring Model I2T R@1 T2I R@1 I2T R@1 T2I R@1 Acc@1 Acc@1 Acc@1 Acc@1

Data
Filtering

CLIP
Score

R50 20.5 15.3 9.9 7.5 14.9 17.5 29.0 38.2
R101 20.1 14.6 9.6 7.6 14.6 16.5 28.6 38.1

ViT-B/32 22.7 15.3 10.8 7.8 15.0 17.7 28.8 38.5
ViT-B/16 22.6 14.8 10.7 8.1 14.6 16.8 28.9 38.4
ViT-L/14 22.9 14.6 10.6 7.8 14.0 16.2 28.5 38.3

ViT-L/14-336px 22.0 15.5 10.4 7.6 14.5 17.0 28.3 38.1

EVACLIP
Score

ViT-B16 20.7 14.6 10.4 7.7 14.8 17.3 28.0 38.0
ViT-L/14 22.2 16.2 11.2 8.2 14.6 17.0 28.9 38.3

ViT-L/14-336px 22.5 15.3 10.4 8.0 13.8 15.3 26.1 38.1
ViT-G/14 22.4 15.2 10.0 7.7 14.7 17.1 28.7 38.5

ViT-G/14-plus 21.9 15.0 11.1 7.6 13.8 15.4 26.2 38.0

BLIP
Score

ViT-B/16-pt 23.5 16.7 11.5 8.2 14.3 16.5 29.5 39.0
ViT-L/16-pt 23.1 16.1 11.2 8.3 13.3 15.0 28.9 38.7
ViT-B/16-ft 23.0 16.3 11.7 8.6 14.1 16.0 29.9 39.2
ViT-L/16-ft 22.6 15.9 11.4 8.5 13.5 14.8 28.5 38.4

BLIP2
Score

ViT-L/14-pt 22.8 16.2 11.2 8.1 14.0 16.2 29.3 39.0
ViT-G/14-pt 23.4 16.6 11.3 8.4 14.1 16.5 29.6 38.9
ViT-G/14-ft 22.9 15.3 11.6 8.8 14.0 16.0 28.6 38.7

Sample
Weighting

CLIP
Score

R50 21.8 15.2 10.1 7.7 14.6 17.0 28.8 38.8
R101 21.5 14.6 10.2 7.6 14.0 15.8 28.5 38.3

ViT-B/32 22.6 15.2 10.8 7.9 14.5 16.6 29.0 38.7
ViT-B/16 21.9 14.5 10.0 7.4 13.9 16.0 28.4 38.0
ViT-L/14 22.4 14.9 10.4 7.4 14.4 16.7 28.5 38.4

ViT-L/14-336px 21.1 14.1 10.2 7.3 14.5 16.3 28.0 37.7

EVACLIP
Score

ViT-B16 22.7 15.3 10.4 7.5 13.8 15.5 28.3 37.9
ViT-L/14 21.7 14.9 10.8 7.8 14.2 16.0 28.6 38.2

ViT-L/14-336px 22.3 15.6 10.6 7.3 14.4 16.4 28.2 37.8
ViT-G/14 23.3 15.9 10.9 8.0 14.7 16.8 28.4 38.6

ViT-G/14-plus 21.5 14.4 10.3 7.2 14.2 15.9 28.1 37.9

BLIP
Score

ViT-B/16 pt 23.9 16.1 11.0 8.4 13.2 16.0 29.8 39.0
ViT-L/16 pt 22.2 15.6 10.7 8.5 13.7 15.7 29.5 39.1
ViT-B/16 ft 23.4 16.0 11.3 8.9 13.0 15.1 29.7 39.4
ViT-L/16 ft 23.0 15.9 11.1 8.6 13.3 15.3 29.4 39.2

BLIP2
Score

ViT-L/14 pt 22.5 15.8 10.9 8.2 13.6 15.0 28.9 38.6
ViT-G/14 pt 23.0 16.0 10.7 8.1 13.8 15.6 29.3 39.0
ViT-G/14 ft 21.9 15.1 11.0 8.7 13.2 15.4 28.5 39.2

Image
Re-captioning

CLIP
Score

R50 39.5 26.5 21.2 14.8 16.2 21.0 23.0 35.8
R101 38.5 26.0 20.8 13.5 15.9 20.5 22.1 35.2

ViT-B/32 39.2 26.7 20.7 14.5 16.2 20.8 22.4 35.7
ViT-B/16 38.1 26.0 20.2 13.8 15.5 20.2 22.2 35.3
ViT-L/14 37.6 26.2 21.0 13.4 15.2 20.8 22.0 35.5

ViT-L/14-336px 38.4 26.3 20.5 13.2 15.0 20.0 21.8 34.9

EVACLIP
Score

ViT-B16 37.3 24.8 20.6 14.0 15.0 20.2 21.6 34.6
ViT-L/14 38.5 26.3 20.9 14.0 16.4 21.2 22.5 36.0

ViT-L/14-336px 38.1 26.1 20.7 13.9 15.9 20.4 22.0 35.0
ViT-G/14 39.4 26.5 21.0 13.2 15.5 20.5 22.3 35.5

ViT-G/14-plus 37.6 25.4 20.1 13.3 16.5 20.9 22.8 35.9

BLIP
Score

ViT-B/16 pt 40.0 27.6 21.6 14.9 15.2 20.0 24.0 36.4
ViT-L/16 pt 39.7 27.1 21.7 14.5 15.3 20.2 23.6 36.2
ViT-B/16 ft 40.4 27.2 22.0 14.8 14.9 19.1 23.9 36.0
ViT-L/16 ft 39.9 26.8 21.4 14.0 15.1 20.0 23.5 36.5

BLIP2
Score

ViT-L/14 pt 39.1 26.0 21.0 14.1 15.1 19.5 23.0 35.8
ViT-G/14 pt 40.0 26.9 21.5 14.5 15.0 20.2 23.5 36.0
ViT-G/14 ft 39.8 26.5 21.8 14.6 15.3 19.8 23.2 36.2

Table 4. Performance of each baseline quality score under three data processing strategies. We train the CLIP ViT-B/32 model on CC3M
dataset [17] processed using different baseline quality scores.

scores by +1.8. For the image captioning task, our MoS
has an advantage of +4.6 on COCO Caption compared to
the average performance of all baseline quality scores, and
is +3.6 better than the best baseline quality score. For vi-
sual grounding task, our MoS is +1.8 better on RefCOCO+
dataset than the best baseline quality score, and +3.8 better
than the average performance of all baseline scores. Com-
pared with the naive average ensembling all baseline scores,
our MoS shows an advantage of +3.4.

7.3. Results on CLIP Model
Train on CC3M dataset. Due to the space limitations of the
main paper, we supplement the performance of each baseline
score in Table 1 (main paper) for CLIP ViT-B/32 model in
Table 4.

Train on LAION Dataset. Similar to the experimental
setting of CC3M, we first calculate the quality scores for each
data in LAION-100M using eight commonly-used off-the-
shelf scoring models, and finally obtain eight baseline quality
scores. These eight scoring models include CLIP (ViT-B/32
and ViT-L/14), EVACLIP (ViT-L/14 and ViT-G/14), BLIP
(ViT-L/16-pt and ViT-L/16-ft) and BLIP2 (ViT-G/14-pt and
ViT-G/14-ft). Then, we calculate our MoS metric based on
these eight baseline quality scores.

In particular, the distribution of standard deviations be-
tween these eight baseline quality scores shows a similar
pattern to Figure 1(a) of the main paper, but with a higher
mean value of 0.23 (vs. 0.14) and a higher maximum value
of 0.39 (vs. 0.26). It means that the quality score disparity



Quality Score Flickr30K MSCOCO ImageNet-1K ImageNet-R CIFAR100 VOC2007
Type Scoring Model I2T R@1 T2I R@1 I2T R@1 T2I R@1 Acc@1 Acc@1 Acc@1 Acc@1

- - 70.2 53.7 35.5 31.3 61.1 62.0 60.3 65.9

CLIP
Score

ViT-B/32 75.5 55.3 38.2 33.9 63.5 64.4 61.9 68.1
ViT-L/14 75.3 55.6 38.1 33.6 63.3 65.0 61.7 68.5

EVACLIP
Score

ViT-L/14 75.9 55.5 38.6 34.0 63.0 65.0 61.5 68.4
ViT-G/14 76.2 56.0 38.0 33.4 63.4 64.3 61.8 68.9

BLIP
Score

ViT-B/16-pt 76.7 56.3 38.5 34.0 62.9 64.5 61.0 65.6
ViT-L/16-ft 77.5 57.1 38.9 34.2 62.8 64.0 61.5 66.3

BLIP2
Score

ViT-G/14-pt 78.0 56.9 39.1 34.8 62.8 64.7 61.7 67.0
ViT-G/14-ft 77.8 57.0 39.5 34.7 62.4 64.1 60.6 66.4

MoS (Ours) All of above 79.0 57.7 40.6 35.3 64.1 65.5 62.4 70.2

Table 5. Comparison on the performance of CLIP (ViT-B/32) model trained on the filtered LAION dataset [22] using different quality
scores. We filter out 10% lowest-quality data based on each quality score. Note: the first line in this table denotes the performance without
data filtering.

phenomenon becomes more obvious on the LAION dataset
than CC3M dataset. This may be because the LAION dataset
is more noisy, and we found that medium-quality data are
more likely to have larger quality score disparity (discussed
in Sec. 2.3 of the main paper).

We also compare the performance of model (CLIP ViT-
B/32) trained with the filtered datasets using different quality
scores. As shown in Table 5, it can be found that the perfor-
mance is also sensitive to the scoring model. Our MoS still
obviously outperforms these baseline quality scores and the
naive average ensemble strategy on all evaluation tasks.

8. Broader Impact

This paper proposes a simple but powerful method to obtain
good data quality metrics that can generalize well. There
are some potential positive societal effects, such as helping
people better understand the role of data to develop more
robust deep learning systems and possibly even be used to
eliminate data bias. As for the potential negative impacts,
we believe that this technology, and even the entire field of
artificial intelligence, may be applied to inhumane social
surveillance, which should be taken seriously by legislative
bodies worldwide.

9. Limitations

The proposed approach in this paper has only been studied in
the field of vision-language so far, without being validated in
broader areas of multi-modal learning, such as speech-vision
or speech-text. In the future, we plan to further update the
research content of this paper and validate it in a wider range
of multi-modal learning domains.
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