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Method Vehicle | Pedestrian | Cyclist
CenterPoint (Fully supervised) 63.16 64.27 66.11
CPD [5] 32.13 13.22 4.87
train by CPD pseudo labels (score>0.1) 33.93 7.09 0.46
train by CPD pseudo labels (score>0.3) 34.77 12.85 0.69
train by CPD pseudo labels (score>0.5) | 33.15 10.14 1.65
train with image pseudo points 33.41 5.18 3.40
train with image RGB 33.98 5.97 7.47
Motal (CPD) 46.45 27.76 29.94

Table 1. 3D AP L2 on WOD validation set.

1. Why did we not train the detector network
with initial pseudo labels directly?

As analyzed in our main paper, pseudo-labels generated
by motion or geometry heuristics cannot be accurate in
classification and regression at the same time. Directly
using the pseudo labels to train the detector cannot at-
tain desirable performance improvement. For example,
we use the pseudo-labels output from CPD to train the
VoxelRCNN [1]. The results are in Table 1. We ob-
serve that no matter what score threshold is used to se-
lect the pseudo-labels, the detection performance improves
marginally or even decreases. The reasons are: (1) Using a
low score threshold to select pseudo-labels introduces clas-
sification and regression errors, leading to decreased detec-
tion accuracy. (2) Using a high score threshold to select
pseudo-labels disregards numerous useful supervision sig-
nals. Therefore, we designed the Motal, which well ad-
dressed this problem by a modality and task-specific knowl-
edge transfer design.

2. Why did we not use the image as input di-
rectly?

A possible way is to directly feed the image to a multi-
modal detector but this will introduce additional inference
time. Moreover, since lots of false supervision signals ex-
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ist in the pseudo labels, the detection performance cannot
be enhanced. An example of using virtual points of Vir-
Conv [4] and pseudo labels from CPD is shown in Table 1,
where the performance improves marginally. Some classes
even become worse.

3. Ablation results for parameters.

The ablation results for 7).4 and 7.4 are shown in the Table 3.
Since f)cy = 0.1 and 7., = 0.7, we obtain the best results,
we use g = 0.1 and 7.4 = 0.7 in this paper.

4. More comparison with AML.

Since AML is also based on the motion-based design, we
provide comparison results with AML [3] using the metrics
of AML. The results are shown in the Table 4. Our method
outperforms the previous method greatly. These advance-
ments come from the MLE and TMT designs, which better
leverage the motion, image appearance, and geometry prior
via a modality and task-specific knowledge transfer frame-
work for unsupervised 3D object detection.

5. More examples of challenge objects

In our paper, we use the image to extend classification la-
bels, as many objects cannot be distinguished on points but
can be recognized on the image. Here, we present more
examples in Fig. 1.

6. More detailed comparison results

We also provide more detailed comparison results including
3D AP /3D APH/BEV AP on the WOD validation set (see
Table 2). Our method shows better performance on all met-
rics, further demonstrating its effectiveness. We provide the
training rounds vs. performances in Table 5. Compared
with fully supervised method, OYSTER requires around
2x training time and MODEST requires around 10X train-
ing time. Our Motal also requires 2X training times, but
its performance is significantly higher than MODEST and



Method Metric Average AP | Avarage AP Veh. L1 Veh. L2 Ped. L1 Ped. L2 Cyc. L1 Cyc. L2
L1 L2 IOU0.5/0,7 10U0.5/0.7 IOU0,3/0.5 10U0,3/0.5 [0U0.3/0.5 [0U0.3/0,5
DBSCAN [2] 0.57 0.43 2.32/0.29 1.94/0.25 0.51/0.00 0.19/0.00 0.28 /0.03 0.20/0.00
DBSCAN* [6] 3.73 3.19 17.36/2.65 14.87/2.29 1.65/0.00 1.3570.00 0.48/0.25 0.43/0.20
MODEST [6] 6.59 5.42 18.51/6.46 15.83/5.48 11.83/0.17 8.96/0.10 1.47/1.14 1.17/1.01
OYSTER [7] 3D AP 8.54 7.58 30.48/14.66 | 26.21/14.10 | 4.33/0.18 3.52/0.14 1.27/0.33 1.24/0.32
CPD [5] 24.05 20.67 57.79/737.40 | 50.18/32.13 | 21.91/16.31 | 18.01/13.22 | 5.83/5.06 5.61/4.87
Motal (CPD) 44.89 39.74 75.07/53.61 | 66.17/46.45 | 43.79/33.26 | 36.79/27.76 | 33.71/29.94 | 32.49/28.83
DBSCAN [2] 0.41 0.29 1.78 /0.15 1.45/0.13 0.34/0.00 0.07 /0.00 0.20/0.00 0.12/0.00
DBSCAN* [6] 3.14 2.63 15.31/2.12 12.84/1.64 1.12/0.00 1.02/0.00 0.23/0.11 0.21/0.08
MODEST [6] 4.71 3.73 16.43/4.25 14.04/3.63 5.59/0.11 4.18/0.05 1.07/0.82 0.45/0.07
OYSTER [7] 3D APH 7.62 6.77 28.56/12.87 | 25.01/12.54 | 3.12/0.12 2.03/0.06 0.87/0.24 0.82/0.21
CPD [5] 19.55 16.91 54.19/34.97 | 46.99/30.09 | 12.01/9.24 10.06 / 7.68 3.68/3.26 3.55/3.14
Motal (CPD) 33.25 29.63 68.55/49.17 | 60.40/42.60 | 18.39/13.72 | 1546/ 11.46 | 26.24/23.45 | 25.28 / 22.58
DBSCAN [2] 0.76 0.56 2.91/0.55 2.34/0.47 0.73/0.01 0.21/0.01 0.32/0.10 0.25/70.10
DBSCAN* [6] 7.41 6.68 22.33/13.30 | 20.60/11.95 | 7.21/0.23 6.49/0.10 1.03/0.39 0.73/0.24
MODEST [6] 10.51 8.51 27.16/16.58 | 21.13/13.31 | 15.98/0.34 14.06/0.13 1.73/1.27 1.38/1.07
OYSTER [7] BEV AP 14.05 11.84 37.73730.57 | 32.31/25.04 | 13.53/0.57 11.76 /0.30 1.56/0.38 1.32/0.33
CPD [5] 27.93 2491 60.81/53.01 | 53.66/47.48 | 22.96/19.31 | 20.21/17.26 | 5.98/5.56 5.68/5.22
Motal (CPD) 48.75 43.28 77.94768.78 | 69.01/60.27 | 44.04/37.04 | 37.02/30.99 | 33.71/31.04 | 32.49/2991

Table 2. Unsupervised 3D object detection results on WOD validation set. We report the 3D AP, 3D APH, and BEV AP using the official

metric code of WOD with different IoU thresholds. * denotes initial training.

Neg 005 01 015 02
mAPL2 | 32.15 3434 34.12 33.89

Teg 065 07 075 08
mAPL2 | 3378 3434 33.92 3245

Table 3. Ablation results for 7)., and 7cg.

3D mAP 2D mAP
Method Ll 12 | L1 L2
Unsup Flow + AML [3] | 42.1 404 | 49.1 474
Motal 60.5 575 | 614 584
Table 4. Comparison with AML.

Method Rounds L1 L2
MODEST [6] 10 2.5 2.2
OYSTER [7] 2 7.4 6.4

CPD [5] 1 20.5 18.1

Motal 2 42.1 38.0

Table 5. Training rounds and performances.

OYSTER. We will investigate more efficient methods of
speeding up training in the future.

7. More detailed IoU distribution after box
propagation

To better understand how box propagation improves the box
quality, we present a more detailed box IoU distribution of
regression labels before and after box propagation in Fig 2.

The IoU distribution between pseudo-label and ground truth
becomes closer to 1, verifying its effectiveness.

8. More example of label extension on image

To better understand how CGloss discovers new objects, we
present more heatmaps predicted by different methods in
Fig. 3. We observe that, by using our CGloss, the generated
heatmaps contain more generalized instances. These results
further verified the effectiveness of our method.
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(a) Difficult to distinguish in points (b) Easy to detect in images

Figure 1. (a) It’s difficult to distinguish objects in 3D points. (b) But it’s easy to recognize objects in 2D images.
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Figure 2. Label IoU distribution before and after box propagation.
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Figure 3. Heatmap predicted by different 2D networks.
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