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Supplementary Material

Our code is available at https://github.com/
dywu98/OnlineDataPrune.git.

A. More Experimental Results
In this section, we provide more experimental results to help
our readers better understand our proposed method.

A.1. Ablation Study on the Weight in ADE
To enhance the adaptability of PFB to the changing dis-
tribution caused by parameter updating, we introduce the
wt

j (Eq. (4) and Eq. (9)) as a dynamic weight to adaptively
balance between different centroids. By re-scaling the out-
put of each kernel according to the number of samples that
were previously assigned to its cluster (represented by the
centroids), those centroids with a great number of nt

j will
contribute more to the probability density, thereby reducing
the importance score of samples with similar features. We
evaluate its effectiveness by replacing the wt

j with 1 (de-
noted as ‘w/o weight’) and comparing the results with PFB
in Tab. S1. Although PFB w/o weight still outperforms Di-
vBS and InfoBatch, the performance drops by a large mar-
gin when the prune ratio grows. This phenomenon shows
the effectiveness of the balancing weight, which may lead
to a better estimation of the probability density function.

Pruning Ratio 30% 50% 70%

Full Data 78.2

InfoBatch*[7] 78.2↑0.0 78.1↓0.1 76.5↓1.7
DivBS[6] 78.5↑0.3 78.2↑0.0 77.2↓1.0

PFB w/o weight 78.9↑0.7 78.4↑0.2 77.4↓0.8
PFB(ours) 79.1↑0.9 78.8↑0.6 77.9↓0.3

Table S1. Ablation study on the weight in ADE for balancing dif-
ferent centroids. Experiments are conducted on CIFAR-100 using
ResNet-18. We use ‘w/o weight’ to denote our modification that
wt

j is replaced by 1 in Eq. (4) of the main text.

A.2. Ablation Study on the Bandwidth Estimation
Methods in ADE

As bandwidth estimation is usually deemed important for
KDE methods, we compare the performance of two popu-
lar bandwidth estimation rules, namely Scott’s rule[8] and
Silverman’s rule[9]. We also introduce a baseline denoted
as ‘Identity’. This baseline simply sets the H as an identity
matrix. Results in Tab. S2 indicate that a proper bandwidth

Methods Bandwidth 30% 50% 70%

Full Data - 78.2

InfoBatch*[7] - 78.2↑0.0 78.1↓0.1 76.5↓1.7

DivBS[6] - 78.5↑0.3 78.2↑0.0 77.2↓1.0

PFB
Identity 77.4↓0.8 76.5↓1.7 75.1↓3.1

Scott[8] 79.0↑0.8 78.8↑0.6 77.9↓0.3

Silverman[9] 79.1↑0.9 78.8↑0.6 77.9↓0.3

Table S2. Ablation study on different bandwidth estimation meth-
ods. Experiments are conducted on CIFAR-100 using ResNet-18.

is crucial for the performance of our PFB. However, there is
no big difference between those two commonly used band-
width estimation methods.

A.3. Detailed Explanation of InfoBatch
InfoBatch[7] employs a soft pruning ratio, using the mean
loss value of all samples as a threshold to divide the dataset
into two subsets. Samples with a loss lower than this thresh-
old form a candidate subset, where each sample has a prun-
ing probability of p, which is reported as the pruning ratio.
However, since the candidate subset only contains half of
the samples, the actual pruning ratio of InfoBatch is p/2.
To highlight this distinction, we denote the original version
of InfoBatch with ‘*’ in the main text. For a fair compari-
son, we follow the modification applied by DivBS[6] to In-
foBatch, where the threshold is set to the 95% percentile to
align with the actual pruning ratio of most pruning methods.
We denote this modified version as InfoBatch†. In the main
text, Tab. 2-4 present a comparison between our method
and InfoBatch† on ImageNet-1k, Cityscapes, and PASCAL
VOC 2012. Here, we further provide experimental results
on CIFAR-100 in Tab. S3 to supplement the comparison.
Aligning the actual pruning ratio reveals a significant per-
formance drop for InfoBatch on CIFAR-100. Beyond the
impact of the adjusted pruning ratio, this decline may also
stem from the large weights applied to the retained samples
within the pruned candidate subset by InfoBatch. (Please
refer to [7] for details of this re-scaling operation.) Such a
large weight may excessively emphasize the retained sam-
ples, potentially hindering the learning of harder examples
in the other subset.

A.4. Error Bars
Error statistics for ResNet-18 and Swin-T on different
datasets are also included in Tab. S4, exhibiting variations
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Pruning Ratio 30% 50% 70%
Actual Ratio 15% 25% 35%

InfoBatch*[7] 78.2↑0.0 78.1↓0.1 76.5↓1.7

Pruning Ratio 30% 50% 70%

InfoBatch† 78.0↓0.2 76.0↓2.2 74.3↓3.9
DivBS[6] 78.5↑0.3 78.2↑0.0 77.2↓1.0

PFB(ours) 79.1↑0.9 78.8↑0.6 77.9↓0.3

Full Data 78.2

Table S3. Fair comparison on CIFAR-100 with InfoBatch.

within an acceptable range. The results show that PFB can
maintain a stable performance with negligible variation.

Dataset/Model CIFAR-10 / ResNet-18 CIFAR-100 / ResNet-18 ImageNet-1K / Swin-T
Pruning Ratio 30% 50% 70% 30% 50% 70% 30% 40% 50%

95.9 95.5 95.2 79.1 78.8 77.9 79.6 79.2 78.2PFB(Ours) ±0.1 ±0.1 ±0.2 ±0.2 ±0.2 ±0.2 ±0.1 ±0.2 ±0.2
Full Data 95.6 ±0.1 78.2 ±0.1 79.6 ±0.1

Table S4. Error bars on CIFAR-10/100 and ImageNet-1k.

B. Implementation Details

We further demonstrate the details of experiments on image
classification and segmentation datasets here.

B.1. Classification Training Settings
All the classification experiments are conducted on a 4-
RTX 4090 GPU server. We follow the training details
of InfoBatch[7] on CIFAR-10/100 using ResNet-18 and
ImageNet-1k using ResNet-50. For Swin-T, we adopt sim-
ilar training settings of Dyn-Unc[5]. The AutoAugment[4]
is applied to augment training data only for Swin-T, includ-
ing random path drop and gradient clipping for a fair com-
parison with Dyn-Unc[5] in Tab. (2) of the main text. All
the detailed settings needed for reproduction are listed in
the Tab. S5.

B.2. Details of Segmentation Experiments
Our segmentation experiments are based on the implemen-
tation of MMSegmentation[2]. On PASCAL VOC 2012[1]
and Cityscapes[3], the models are trained for 36,000 itera-
tions. Other training and evaluation details remain the same
with MMSegmentation. Please note that the reported mIoU
results in Tab. (3) and (4) employ the popular multi-scale
evaluation technique. Moreover, as most semantic segmen-
tation methods employ an auxiliary segmentation head at
the third stage of the encoder, we extract the features at this
stage to utilize the abundant semantic information. Please
note that there is a big difference between segmentation and

classification networks: aside from the encoder, segmen-
tation networks usually have a computationally expensive
decoder. Hence, blocking at the third stage of the encoder
can still significantly cut down the training time.

Parameters CIFAR-10 CIFAR-100 ImageNet-1k

Models ResNet-18 ResNet-18 ResNet-50 Swin-T

Tr
ai

ni
ng

optimizer SGD SGD Lars AdamW
weight decay 0.0005 0.0005 0.00005 0.05
batch size 128 128 1024 1024
epochs 200 200 90 300
learning rate 0.10 0.05 6.4 0.001
label smoothing 0.1 0.1 0.1 0.1
learning rate scheduler OncCycle OncCycle OneCycle CosineAnnealing
learning rate warmup - - 5 20

D
at

a
Pr

un
in

g b 0.01 0.01 0.001 0.001
NC 64 64 64 64
D 128 128 128 128
PFB Location stage-1 stage-1 stage-2 stage-1
epoch start pruning 5 5 5 15
epoch stop pruning 180 180 80 265

Table S5. Detailed training settings on image classification
datasets.
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