
TARS: Traffic-Aware Radar Scene Flow Estimation

Supplementary Material

A. Addntional Implementation Details
A.1. Further Model Details
In this section we provide more details about TARS.

When computing the point-level flow embeddings in
Sec. 3.2.1, we use an MLP for positional encoding but omit
it in those equations for simplicity. It is also applied in
cross-attention in the TVF decoder (Sec. 3.4).

In the scene update stage in Sec. 3.3, we firstly apply
CNN layers to the feature map χl

od ∈ RHl×Wl×Dl to adapt
the object features. We then apply pooling layers, because
feature maps from the OD pyramid have varying resolutions
(Hl,Wl) at each level, and we match them with the pre-
defined shape of the coarse TVF.

In the flow painting stage in Sec. 3.3, we fuse the scene
Xl

traffic and motion feature Xl
motion in a spatial attention style

[21], specifically:

Xl
fusion = wl ⊙ Xl

traffic + (1− wl)⊙ Xl
motion, with (9)

wl = σ(Concat(W1 ∗ Xl
traffic,W2 ∗ Xl

motion)), (10)

where W1,W2 are CNN kernels that generate pixel-wise
attention scores, wl is the pixel-wise attention weights.

In the flow painting stage in Sec. 3.3, we use axial atten-
tion to provide the global receptive field, specifically:

TVFl
τ = TVFl

τ -H + TVFl
τ -W, with (11)

TVFl
τ -H = Self-A(Col(TVFl

τ−1)), (12)

TVFl
τ -W = Self-A(Row(TVFl

τ -H)), (13)
Self-A(·) = Attention(·, ·, ·), (14)

where τ = {1, ..., ω}, Col(·) collects W column vectors and
Row(·) collects H row vectors from the 2D TVF.

On the proprietary dataset, we provide all models
with ego-motion Ω ∈ R4×4 as known input. We ap-
ply ego-motion compensation before the PointGRU blocks
(Sec. 3.5), aligning O and P , as well as P and Q into the
same coordinate system.

A.2. Ego-Motion Head Details
On the VOD dataset, our TARS-ego adopts the same ap-
proach as RaFlow and CMFlow [6, 7] to train an ego-motion
head. It predicts the ego transformation, which is treated as
static flow and assigned to all static points. This assignment
requires our model to distinguish between moving and static
points, which is achieved by a motion-segmentation head.
Motion-segmentation head. The motion-segmentation
head takes the final flow embeddings from the L-th level

of TARS-ego as input and outputs a probability map S indi-
cating for each point whether it is moving or static. We use
a simple three-layer MLP followed by a sigmoid function to
generate the probability map. A binary segmentation mask
can be generated from S using a threshold of 0.5.

We apply the same training strategy in previous works
[6, 7]. During training, we use ground truth (GT) seg-
mentation pseudo-labels as the segmentation mask, in order
to provide stable segmentation results for training the ego-
motion head. During testing, we use the model output from
the motion-segmentation head.
Ego-motion head. Since Pwarp is obtained by warping P
using the scene flow output FL from the last L-th level,
they can be used as natural correspondences to infer the ego
motion. In the ego-motion head, we take P , Pwarp, and S as
input. Then we perform the differentiable weighted Kabsch
algorithm [10], which infers rigid transformation between
P and Pwarp, with (1−S) as the point weight to neglect mov-
ing points. Finally, we use the binary motion segmentation
mask generated from S to identify static points and assign
the inferred ego-motion to static points as their final scene
flow Fbg. Since the ego-motion is inferred between P and
Pwarp, a more accurate FL leads to improved ego-motion
predictions and, ultimately, more accurate static flow Fbg.
Results of the ego-motion estimation are shown in Tab. A.

Table A. Evaluation of the ego-motion head on VOD. RTE: rela-
tive translation error. RAE: relative angular error.

Model RTE [m] RAE [°]
CMFlow [7] 0.083 0.140
TARS-ego (ours) 0.059 0.098

A.3. TARS-ego and TARS-superego
On the VOD dataset, we evaluate our model using two
setups that apply the ego-motion information differently:
TARS-ego and TARS-superego, results shown in Tab. 3 of
the main manuscript. TARS-ego uses GT ego-motion to
train a ego-motion head and motion-segmentation head to
refine the static flow Fbg; while TARS-superego uses ego-
motion as input and applies ego-motion compensation, ex-
pecting the static flow Fbg to be zero vectors (without those
additional heads). On the proprietary dataset, since ego-
motion compensation is applied to all models, we do not
specifically label our model as TARS-superego. In this sec-
tion, we discuss the reason of leveraging ego-motion.

On one hand, ego-motion information from an odometer
is simple, easy to obtain, yet highly effective. Utilizing this
information enhances scene flow performance in both ways:

as supervision signal for an ego-motion head, or as known
input for ego-motion compensation. Nevertheless, the lat-
ter aligns more closely with real-world autonomous driving
scenarios, where a GPS/IMU sensor is often available. It
helps address the challenges of radar scene flow.

On the other hand, performing ego-motion compensa-
tion maximizes the potential of our model TARS. By com-
pensating point cloud P into the coordinate system of point
cloud Q, the points in P and the OD feature map from Q
share a common coordinate system, starting from the lowest
level of TARS. This eliminates the need for the lower levels
of TARS to firstly warp the points in P closer to the cor-
responding object features, ensuring alignment within the
TVF throughout the process.

Algorithm 1 TARS-ego Forward Pass

Require: Consecutive point clouds P,Q, previous point
cloud O and its low-level hidden state ht−2

Ensure: Scene flow FL, motion segmentation mask S,
predicted ego-motion Ω̂, hidden state ht−1

1: ▷ Collect multi-level OD features
2: {χl

od}Ll=1 ← ODBranch(Q)
3: ▷ 1. Point feature extraction
4: (P,Q,p,q)← MLP(P,Q)
5: ▷ 2. Low-level temporal module
6: (P,Q,p,q, ht−1)← PointGRU(P,Q,p,q, O, ht−2)
7: ▷ 3. Point patch feature extraction
8: ▷ when l = L: full point set
9: {P l, Ql,pl,ql}Ll=1 ← MultiScaleEncoder(P,Q,p,q)

10: ▷ 4. Flow & embeddings at l = 1
11: P 1

warp ← P 1 + 0

12: e1point ← PointLevelEmb(P 1
warp, Q

1,p1,q1)

13: (F 1, e1)← FlowHead(e1point,∅,∅)
14: ▷ 5. Coarse-to-fine prediction
15: TVF1 ← ∅
16: for l = 2 up to L do
17: TVFl ← TVF Encoder(P l−1,pl−1, F l−1,
18: el−1, χl

od,TVFl−1)
19: P l

warp ← P l + Interp(F l−1)

20: elpoint ← PointLevelEmb(P l
warp, Q

l,pl,ql)

21: p̂l = Concat(Interp(el−1),pl)

22: eltraffic ← TVF Decoder(P l
warp, p̂l,TVFl)

23: (F l, el)← FlowHead(elpoint, Interp(el−1), eltraffic)
24: end for
25: ▷ 6. Static points correction
26: (FL,S, Ω̂)← EgoHead(FL, eL, PL)
27: return FL,S, Ω̂

A.4. Pseudo-Code
In this section, we present the pseudo-code of TARS-ego
(Algorithm 1) and detailed explanations of the TVF encoder

and decoder modules (Algorithms 2 and 3).
The forward pass of TARS-ego takes P,Q,O, ht−2 and

outputs FL,S, Ω̂, ht−1. It first computes low-level point
features, updates temporal context with PointGRU [9], and
encodes point patch features using the MultiScaleEncoder.
At the lowest level of TARS, the FlowHead initializes scene
flow and embeddings using only point-level motion cues. A
coarse-to-fine architecture then refines the flow: the TVF
encoder builds the traffic-level motion understanding, the
TVF decoder captures rigid motion in surrounding space,
and the FlowHead produces refined flow from dual-level
flow embeddings. Finally, the EgoHead corrects static
points with predicted ego-motion.

Algorithm 2 TVF Encoder

Require: Previous points P l−1, features pl−1, flow F l−1,
flow embeddings el−1, TVFl−1, OD feature map χl

od
Ensure: Updated TVFl

1: ▷ 1. Scene update
2: if TVFl−1 ̸= ∅ then
3: Xtraffic ← GRU(Conv(χl

od),TVFl−1) ▷ Eq. (4)
4: else
5: Xtraffic ← Conv(χl

od)
6: end if
7: ▷ 2. Flow painting
8: P l−1

warp ← P l−1 + F l−1

9: voxel← Voxelize2D(P l−1
warp,Concat(pl−1, el−1))

10: Xmotion ← Point2Grid SelfAttn(voxel)
11: Xfusion ← SpatialAttnFusion(Xtraffic, Xmotion) ▷ Eq. (9)
12: ▷ Global attention
13: TVFl ← AxialAttn(Xfusion)
14: return TVFl

The Inputs to our TVF encoder (Algorithm 2) are pre-
vious level’s P l−1, pl−1, F l−1, el−1, TVFl−1, χl

od, and
the output is the updated TVFl for the current level. In the
scene update stage, a ConvGRU [1] integrates prior TVF
with OD features to encode traffic context. Then, in the
flow painting stage, warped points are voxelized and pro-
cessed by self-attention to capture motion context. Finally,
the spatial attention fuses traffic and motion streams, and
the global attention enhances the combined representation.

Algorithm 3 TVF Decoder

Require: Warped points P l
warp, features p̂l, TVFl

Ensure: Traffic-level flow embeddings eltraffic
1: NTVF ← KNN(K,P l

warp,TVFl) ▷ Eq. (6)
2: eltraffic ← Grid2Point CrossAttn(p̂l,TVFl,TVFl,NTVF)
3: return eltraffic

The TVF decoder (Algorithm 3) takes warped points
P l

warp, combined features p̂l and the TVFl. It finds the K

nearest grid cells for each point and applies a grid-to-point
cross-attention. The output is the traffic-level flow embed-
ding eltraffic, which is then consumed by the FlowHead.

A.5. Reproduced LiDAR-Model Details
For a complete comparison with prior works, we include
latest LiDAR scene flow models [12, 23] in the comparison
on the VOD dataset, results shown in Tab. 3 in the main
manuscript. In this section, we provide the details of our
reproduction of DeFlow [23] and Flow4D [12].

DeFlow and Flow4D underperform compared to TARS
and CMFlow [7]. This is because their fully-voxel represen-
tation, designed for the efficiency challenge in large-scale
LiDAR point clouds, becomes unsuitable for sparse radar
point clouds. In DeFlow [23], the GRU-based voxel-to-
point refinement module becomes ineffective, because most
pillars contain only a few radar point, leading to a loss of
precise localization (although this effectively improves the
efficiency). Similarly, Flow4D’s [12] fine-grain 4D voxel
representation is less appropriate for sparse radar data.

Originally implemented on the LiDAR dataset Argov-
erse 2 [20], DeFlow and Flow4D take two LiDAR point
clouds P ∈ RN×3 and Q ∈ RM×3 as input. Note that,
both of them take only x, y, z coordinates as input chan-
nels, without using the intensity information from LiDAR.
For fair comparison on the VOD dataset, we extend their
input to 5 dimensions, adding RRV (relative radial veloc-
ity) and RCS (radar cross-section). We also adapt their grid
feature map shape according to VOD’s point cloud range.

Flow4D supports multi-frame input, while its 2-frame
setup also achieves SOTA performance on Argoverse 2. As
labeled in Tab. 3, we test the Flow4D-2frame setup for a fair
comparison with other models.

During training, we use the following losses: Lsc, Lss,
Lrd, Lfg, and Lbg (details see Appendix D.2). We keep their
original implementations, and since these models lack ego-
motion heads, we omit TARS-ego & CMFlow’s additional
losses (Lseg, Lego, Lopt). This setup is the same as the train-
ing of our TARS-no-ego model, where we also removed the
ego-motion and motion-segmentation head (results shown
in Tab. 6 Group No. 1, highlighted in blue). Certainly,
ego-motion compensation is also not applied for TARS-no-
ego. Under the same training loss and “no-ego” setup, De-
Flow and Flow4D still have a large accuracy gap compared
to TARS-no-ego (16.7% and 18.5% on AccS; 27.7% and
33.1% on AccR, respectively).

A.6. Dual-Task Network Training Strategy
TARS jointly performs object detection and radar scene
flow, enhancing the scene flow accuracy and also enabling
a comprehensive perception. Experiments in PillarFlowNet
[8] show that joint training of these two tasks reduces the
performance of each individual task. Our experimental re-

sults of joint training are consistent with theirs, shown in
Tab. B. Therefore, we perform a staged training: first train
an object detector, then freeze its parameters to stabilize fea-
ture maps for the scene flow branch. This maintains OD
performance while also allowing flexibility to adopt differ-
ent training strategies for the object detector.

Table B. Joint training experiment on the proprietary dataset.

Training Strategy Scene Flow Branch OD Branch AP [%]↑
OD pre-trained Joint Staged MEPE↓ AccS↑ AccR↑ SEPE↓ Car Ped. Cycl. Truck

no ✓ 0.094 60.4 77.0 0.026 65.3 51.7 55.4 52.3
yes, not frozen ✓ 0.067 66.8 87.1 0.036 66.7 53.2 60.0 53.8

yes, frozen ✓ 0.069 69.8 86.8 0.038 67.5 54.5 62.2 55.9

A.7. Object Detection Branch Details
We use an off-the-shelf object detector as the OD branch on
both datasets and freeze its weights. In this way, we main-
tain the OD performance and stabilize the feature map. As
discussed in Sec. 3.1, the object detection branch should
have a grid-based backbone to provide bird’s eye view
(BEV) feature maps to the scene flow branch. This excludes
point-based detectors, such as 3D-SSD [24], where features
are preserved in point form rather than being structured into
grids. In contrast, voxel-based detectors typically generate
multi-scale feature maps, which aligns well with TARS’s
hierarchical architecture. Therefore, we utilize the OD fea-
ture map at each corresponding level within our hierarchical
design.

We employ PointPillars [14] as the object detector on the
VOD dataset (result shown in Tab. C). The OD branch result
on the proprietary dataset is shown in Tab. D.

Table C. Performance of the object detection branch on the VoD
dataset. The results are reported separately for the entire annotated
area and the driving corridor area.

Dataset AP in the entire annotated area [%]↑ AP in the driving corridor area [%]↑
Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP

VOD 30.59 30.21 61.95 40.92 64.19 41.61 85.04 63.61

Table D. Performance of the OD branch on the proprietary dataset.

Dataset AP in the entire annotated area [%]↑
Car Pedestrian Cyclist Truck

proprietary 67.46 54.50 62.15 55.86

B. Additional Ablation Studies
B.1. OD Branch Ablation Study
In Tab. E, we test the effect of the object detection branch’s
accuracy on the performance of the scene flow branch. By
adjusting the feature channels of PointPillars, we create
three models of varying sizes: PP-L, PP-M, and PP-S (from
large to small).

However, we observed that even with massive reductions
in feature channels and parameters, PP-M and PP-S still
maintain OD accuracy comparable to PP-L, and their cor-
responding scene flow branch performance is also similar.
To isolate the corrective effect of the ego-motion head on
scene flow predictions, we further test the performance of
TARS-no-ego under three PointPillars setups. The experi-
ments show that using PP-L achieves the best performance
in both TARS-ego and TARS-no-ego models. However, due
to the similar accuracy of the OD branch, the performance
differences in the scene flow branch are not significant.

Table E. Ablation study of the OD branch on the VOD dataset.
PP-S, PP-M, PP-L refer to three different PointPillars [14] se-
tups. TARS-no-ego: without ego-motion head and three super-
vision signals L{seg, ego, opt}.

Object Detection branch Scene Flow Branch

Model #Params AP in the entire annotated area TARS-ego TARS-no-ego
Car Ped. Cycl. mAP EPE AccR AccS EPE AccR AccS

PP-S 0.05M 25.63 28.64 61.04 38.44 0.093 38.1 68.5 0.117 27.0 57.4
PP-M 0.33M 29.73 27.28 59.33 38.78 0.095 37.1 67.2 0.114 27.9 58.3
PP-L 9.30M 30.59 30.21 61.95 40.92 0.092 39.0 69.1 0.111 28.5 59.3

B.2. Class-wise Scene Flow Evaluation
Khatri et al. [11] proposed a novel scene flow evaluation
method, computing class-aware EPE to analyze the failure
cases in scene flow. We provide this analysis in Tab. F for
the best three models in the VOD dataset, i.e. DeFlow [23],
CMFlow [7] and our TARS-ego. Note that, Here we adapt
the Bucket Normalized EPE [11] to MRNE. The reason is
that, on the VOD dataset we compute MRNE for dynamic
points, while EPE is an overall metric for all points. There-
fore, to achieve class-aware evaluation, we compute per-
class MRNE.

Table F. Scene flow evaluation on the VOD dataset, with per-class
MRNE analysis. “Sup.”: supervision.

Overall Moving Static Per-class MRNE↓
Method Sup. EPE↓ AccS↑ AccR↑ RNE↓ MRNE↓ SRNE↓ Car Ped. Cycl.

DeFlow [23] Cross 0.217 11.8 31.6 0.087 0.098 0.085 0.092 0.081 0.106
CMFlow [7] Cross 0.130 22.8 53.9 0.052 0.072 0.049 0.064 0.062 0.086
TARS-ego (ours) Cross 0.092 39.0 69.1 0.037 0.061 0.034 0.051 0.052 0.073

B.3. Comparison with Fully-supervised Methods
Ding et al. [7] compared weakly-supervised CMFlow with
fully-supervised LiDAR models, e.g. PV-RAFT [19]. We
continue this discussion in Tab. G. Note that the “fully-
supervised” setup differs primarily in its annotations [7]:
using human-annotated bboxes and tracking IDs to de-
rive actual scene flow GT. In contrast, the aforementioned
pseudo scene flow GT F̂fg in the foreground loss is gener-
ated using an off-the-shelf, pre-trained LiDAR multi-object
tracking model, requiring no additional annotation efforts.

Experiments in [7] demonstrated that the weakly-
supervised CMFlow (with cross-modal losses) achieved 3%

Table G. Comparison with fully-supervised models on the VOD
dataset. Fully-supervised model results are cited from [7]. “Sup.”
indicates the supervision signal, Full: training with actual scene
flow ground truth, Self: training with only self-supervised losses,
Cross: with additional cross-modal losses.

Method Sup. EPE [m]↓ AccS [%]↑ AccR [%]↑ RNE [m]↓
FlowStep3D [13] Full 0.286 6.1 18.5 0.115
Bi-PointFlowNet [4] Full 0.242 16.4 35.0 0.097
FlowNet3D [15] Full 0.201 16.9 37.9 0.081
PointPWC-Net [22] Full 0.196 17.7 39.7 0.079
PV-RAFT [19] Full 0.126 25.8 58.7 0.051
PointPWC-Net [22] Self 0.422 2.6 11.3 0.169
FlowStep3D [13] Self 0.292 3.4 16.1 0.117
CMFlow [7] Cross 0.141 22.8 53.9 0.052
TARS-ego (ours) Cross 0.092 39.0 69.1 0.037

lower AccS and 4.8% lower AccR compared to the fully-
supervised PV-RAFT. Nevertheless, CMFlow was able to
achieve comparable EPE and AccR to the fully-supervised
PV-RAFT by leveraging extra weakly-supervised training
samples without costly annotations (∼ 140% more than the
number of training samples used for PV-RAFT). In contrast,
as shown in Tab. G, TARS-ego surpasses fully-supervised
PV-RAFT with a 13.2% higher AccS and 10.4% higher
AccR, without requiring any additional training samples.

Table H. TARS under fully-supervised setup on VOD.

Method Sup. EPE↓ AccS↑ AccR↑ RNE↓ MRNE↓ SRNE↓
CMFlow [7] Cross 0.130 22.8 53.9 0.052 0.072 0.049
PV-RAFT [19] Full 0.126 25.8 58.7 0.051 N/A N/A
TARS-ego (ours) Cross 0.092 39.0 69.1 0.037 0.061 0.034
TARS-ego (ours) Full 0.087 42.2 72.7 0.035 0.059 0.031

Training TARS under fully-supervised setup. We test
the performance of TARS-ego under the aforesaid fully-
supervised setup and disabled the self-supervised losses:
Lsc,Lss,Lrd,Lopt. As shown in Tab. H, the fully-supervised
training improves the performance of TARS across all met-
rics, demonstrating TARS’s potential with more precise GT.

B.4. Emergency-Scenario Analysis
In TARS, perceiving traffic is one of the core ideas. Incor-
porating traffic modeling into motion prediction may raise
concerns about emergent situations, such as a pedestrian
suddenly entering traffic. Nevertheless, this is addressed
by the overall design of TARS: all traffic-related modules
in TARS employ attentive layers, enabling the neural net-
work to adaptively balance the reliance on point-level and
traffic-level features.

This is particularly evident in the encoding and decoding
processes of the TVF. In the TVF encoder, we treat the point
property pl−1 (from PointNet) and motion features el−1

(flow embeddings) as equally important by concatenating
them and then applying point-to-grid self-attention. Simi-
larly, in the TVF decoder, we form the query by concate-
nating pl with the upsampled el−1 for grid-to-point cross-

Image Reference HALFlow TARS (ours)

Tangen�al mo�on disappear Tangen�al mo�on captured
Direc�on aligned with rigid body
(see colored LiDAR reference points)

Tangen�al mo�on underes�mated
& Inconsistent mo�on in one object

Tangen�al mo�on captured

Figure 7. Qualitative results on the proprietary dataset, compared with HALFlow [18]. It illustrates two scenarios of vulnerable road users
approaching the front area of the ego vehicle with tangential motion. TARS is able to capture these challenging tangential movements.

attention with the TVF.
More importantly, we leverage additional information

from the OD branch, which provides object features of vul-
nerable road users. This helps the scene flow branch in per-
ceiving the presence of vulnerable road users.

In Fig. 7, we show two scenarios where a person riding
a bike approaches the front area of the ego vehicle from
a tangential direction, which is particularly challenging to
perceive by radar sensors. Our TARS successfully captures
the tangential motion of the bike, while, in the outputs of
the previous work, the tangential motion erroneously disap-
pears or is underestimated.

These examples also highlights the importance of com-
bining radar scene flow with object detection in autonomous
driving. By integrating motion prediction with object
bounding boxes, the system can select the optimal strategy
based on the ego vehicle’s speed and the direction and mag-
nitude of target’s motion.

C. Efficiency Analysis

We compare the efficiency of TARS with the previous best
models on both datasets. All experiments are conducted on
a single GeForce RTX 3090 GPU with a batch size of 1.

As shown in Tab. I, on the VOD dataset, our scene flow
branch has 3.82M parameters, which is fewer than CM-
Flow’s 4.23M. The total runtime per frame of TARS-ego
is 84ms, 15ms higher than CMFlow’s 69ms, with 10ms at-
tributed to the scene flow branch and 5ms to the additional
OD branch. Nevertheless, TARS can achieve real-time per-
formance under a 10-Hz radar, functioning as a unified sys-
tem for both object detection and scene flow estimation.

The results on the proprietary dataset are shown in Tab. J.

Table I. Efficiency analysis on the VOD dataset. The total run-
time is a sum of scene flow branch (SF) and OD branch (if exist).
#Param: the number of parameters in the scene flow branch.

Method Performance (VOD) Runtime [ms]↓ #Param ↓EPE [m]↓ AccS [%]↑ AccR [%]↑ Total SF OD
CMFlow [7] 0.130 22.8 53.9 69 69 / 4.23M
TARS-ego (ours) 0.092 39.0 69.1 84 79 5 3.82M

Table J. Efficiency analysis on the proprietary dataset. The total
runtime is a sum of scene flow branch (SF) and OD branch.

Method Performance (proprietary) Runtime [ms]↓ #Param ↓MEPE [m]↓ AccS [%]↑ AccR [%]↑ Total SF OD
HALFlow [18] 0.170 50.9 63.8 77 77 / 1.00M
TARS (ours) 0.069 69.8 86.8 102 96 6 1.60M

Compared to the previous best model, i.e., HALFlow, TARS
adds 0.6M additional parameters. The total runtime of
TARS is 102ms per frame, 25ms higher than HALFlow’s
77ms, with 19ms from the scene flow branch and 6ms from
the additional OD branch. On the proprietary dataset, TARS
operates at the edge of the real-time criterion and could
achieve a real-time dual-task system with slight runtime op-
timization (e.g. using FP16).

TARS has a higher runtime on the proprietary dataset
compared to the VOD dataset. This results from the signif-
icantly larger number of radar points per frame (∼6K vs.
256 points), and scene flow estimation operates on two in-
put point clouds at the same time. On the VOD dataset, the
increase in parameters is mainly due to the CNN layers for
adapting the OD features in the TVF encoder.

D. Evaluation Metrics & Loss Functions
D.1. Evaluation Metrics
In this section, we introduce details of the evaluation met-
rics used in the experiments. Our input consists of two point
clouds P and Q. Let f̂i and fi represent the GT and pre-
dicted scene flow for a point pi, respectively. Nfg and Nbg
denote the number of moving points and static points. The
subscripts fg or bg indicate points belonging to moving or
static point set.

On the VOD dataset, we follow the evaluation metrics
used in CMFlow [7]:
• EPE = 1

N

∑N
i=1 ∥fi − f̂i∥2,

• AccS = 1
N

∑N
i=1 I(EPEi < 0.05),

• AccR = 1
N

∑N
i=1 I(EPEi < 0.1),

• RNE = 1
N

∑N
i=1 EPEi/

rRi

rLi
, RNE normalizes EPE by

the resolution ratio between radar and LiDAR at each
point location (independent of model predictions), in or-
der to accommodate low-resolution radar. The average
resolution ratio on VOD is 2.5. For high-resolution radar
datasets, we directly report EPE & MEPE.

• MRNE = 1
Nfg

∑
i∈Pfg

RNEi,

• SRNE = 1
Nbg

∑
i∈Pbg

RNEi,

where I(·) is the indicator function, which evaluates to one
if and only if the condition is true, rR

rL
is the resolution ratio

between radar and LiDAR.
On the proprietary dataset, high-resolution radars elimi-

nate the need for RNE, and we focus on the evaluation of
moving points since ego-motion compensation is applied:
• MEPE = 1

Nfg

∑
i∈Pfg

∥fi − f̂i∥2,

• MagE = 1
Nfg

∑
i∈Pfg

∣∣∣∥fi∥2 − ∥f̂i∥2∣∣∣ ,
• DirE = 1

Nfg

∑
i∈Pfg

arccos
(

fTi ·f̂i
∥fi∥2∥f̂i∥2

)
,

• AccS = 1
Nfg

∑
i∈Pfg

I(MEPEi < 0.05),

• AccR = 1
Nfg

∑
i∈Pfg

I(MEPEi < 0.1),

• SEPE = 1
Nbg

∑
i∈Pbg

∥fi − f̂i∥2,
• AvgEPE = 1

2 (MEPE + SEPE),
where AccS and AccR are computed only on moving
points. MagE and DirE have not appeared in prior works.
They reflect the two aspects of EPE: magnitude error and di-
rectional error. They can help reveal the sources of MEPE,
e.g. high-speed underestimation or direction error.

D.2. Weakly-Supervised Loss Functions
In our weakly-supervised training, we employ the three self-
supervised losses proposed in [6]: the soft Chamfer loss
Lsc, spatial smoothness loss Lss, and radial displacement
loss Lrd . We also use the foreground loss Lfg [7] and our
background loss Lbg.

On the VOD dataset, we train TARS-ego with additional
cross-modal losses from CMFlow [7]: the motion segmen-

tation loss Lseg, ego-motion loss Lego, optical flow loss Lopt.
TARS-superego and TARS-no-ego didn’t use these losses.

Let P ′ = Pwarp denote the resulting point cloud that
warped by the predicted scene flow.
• The soft Chamfer loss Lsc minimizes distances between
nearest points between Pwarp and Q while handling outliers
using probabilistic matching, formulated as:

Lsc =
∑

p′
i∈Pwarp

I(ν(p′i) > δ)

[
min
qj∈Q

∥p′i − qj∥22 − ϵ

]
+

+
∑
qi∈Q

I(ν(qi) > δ)

[
min

p′
j∈Pwarp

∥qi − p′j∥22 − ϵ

]
+

,

(15)

where ν(p) represents the per-point Gaussian density factor
estimated using kernel density estimation, points with ν(p)
below threshold δ are discarded as outliers, and the appli-
cation of [·]+ = max(0, ·) in Eq. (15) ensures that small
matching discrepancies below ϵ are ignored. For further de-
tails, we refer to RaFlow [6].
• The spatial smoothness loss Lss enforces neighboring
points to have similar flow vectors, weighted by distance
to ensure spatial smoothness, formulated as:

Lss =
∑
pi∈P

∑
pj∈NP (pi)

k(pi, pj)∥fi − fj∥22, (16)

where k(pi, pj) = exp
(
−∥pi−pj∥2

2

α

)
is a radial basis func-

tion (RBF) kernel that weighs each neighbor point pj ∈
NP (pi) based on its Euclidean distance to pi, with α con-
trolling the impact of the distance. All kernel weight values
are normalized together using a softmax function.
• The radial displacement loss Lrd constrains the radial pro-
jection of predicted flow vectors using RRV measurements,
formulated as:

Lrd =
∑
pi∈P

∣∣∣∣ fTi · pi∥pi∥
− RRVi∆t

∣∣∣∣ , (17)

where pi denotes the 3D point coordinate, RRVi is the RRV
measurement of a point, and ∆t is the time interval between
two radar scans.
• The foreground loss Ll

fg uses pseudo scene flow GT F̂fg
derived from the object bounding box and tracking ID
generated by an off-the-shelf LiDAR multi-object tracking
model. This loss is applied for each level and formulated
as:

Ll
fg =

1

N l
fg

∑N l
fg

i=1

∥∥∥f̂ lfgi − f lfgi

∥∥∥
2
, (18)

where f̂ lfgi is the pseudo GT for i-th moving point.

Table K. SOTA object detection (OD) and tracking accuracy on the nuScenes and VOD dataset.

Sensor nuScenes SOTA OD [%]↑ VOD SOTA OD [%]↑ SOTA Tracking [%]↑
Method mAP Method mAP Method Dataset AMOTA

LiDAR LION (NeurIPS24) [16] 69.8 CMFA (ICRA24) [5] 69.6 VoxelNeXt (CVPR23) [3] nuScenes 71.0
Radar RadarDistill (CVPR24) [2] 20.5 CMFA (ICRA24) [5] 41.8 RaTrack (ICRA24) [17] VOD 31.5

• The background loss Ll
bg uses pseudo GT F̂bg derived

from ego-motion or using zero vectors if ego-motion com-
pensated, applied for level l and formulated as:

Ll
bg =

1

N l
bg

∑N l
bg

i=1

∥∥∥f̂ lbgi
− f lbgi

∥∥∥
2
, (19)

where f̂ lbgi
is the pseudo GT for i-th static point.

• The overall loss Lall is a sum of the above losses:

Lall = Lsc + Lss + Lrd +
∑L

l=1
(Ll

fg + λbgLl
bg). (20)

On the VOD dataset, we use additional cross-modal
losses [7]: the motion segmentation loss Lseg, ego-motion
loss Lego, optical flow loss Lopt.
• The motion segmentation loss Lseg uses the pseudo seg-
mentation GT derived from the odometer and RRV to train
a motion-segmentation head, formulated as:

Lseg =
1

2

N∑
i=1

ŝi log(si) + (1− ŝi) log(1− si), (21)

where ŝi ∈ {0, 1} is the pseudo motion segmentation GT
derived from odometer and RRV, and si ∈ [0, 1] is the pre-
dicted moving probability.
• The ego-motion loss Lego uses the GT ego-motion from
the odometer to train an ego-motion head (Appendix A.2),
formulated as:

Lego =
1

N

N∑
i=1

∥∥∥∥(Ω− Ωpred)

[
pi
1

]∥∥∥∥
2

, (22)

where Ωpred is the predicted rigid transformation, Ω is the
GT ego-motion derived from odometry.
• The optical flow loss Lopt projecting the scene flow onto
an image and training with pseudo optical flow labels from
an off-the-shelf optical flow model as additional supervision
signal, formulated as:

Lopt =
1

Nfg

Nfg∑
i=1

DPoint-Ray

(
pi + fi,Ray(pproj

i + f̂opt
i), θ

)
,

(23)
where pproj

i is the projection of point pi on the image plane,

f̂opt
i is pseudo optical flow GT generated by a off-the-shelf

image optical flow model, and DPoint-Ray(·) calculates the
point-line distance between the warped 3D point and the
corresponding Ray(·) traced from the optical flow-warped

pixel. The parameter θ denotes the sensor calibration pa-
rameters. This loss is computed only for moving points.
For further details, we refer to [7].
• The overall loss on the VOD dataset is formulated as:

Lall =Lsc + Lss + Lrd +
∑L

l=1
(Ll

fg + λbgLl
bg)

+Lseg + Lego + λoptLopt, (24)

where λopt is set to 0.1 as CMFlow [7].

E. Discussion on the Joint Network
TrackFlow [11] directly derives LiDAR scene flow from ob-
ject detection and tracking results. This approach is in-
tuitive, especially as it directly uses the object-detection
bounding boxes to ensure motion rigidity. However, this
method is unsuitable for radar, where sparsity and noise
cause a 30-50 mAP drop in object detection (OD) and a 40
AMOTA gap in tracking (see Tab. K). This leads to missing
motion predictions for false negatives and frequent track-
ing failures, which severely limit its ability to infer radar
scene flow. By contrast, our point-wise radar scene flow
predicts motion per point, ensuring stable motion signals.
Even if objects are undetected or noisily tracked, some mov-
ing points can still be identified, providing auxiliary infor-
mation for decision-making in autonomous driving. In our
design, TARS perceives traffic context by leveraging OD
feature maps instead of bounding boxes, thereby reducing
reliance on high OD recall.

References
[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville.

Delving deeper into convolutional networks for learning
video representations. arXiv preprint arXiv:1511.06432,
2015. 4, 5, 2

[2] Geonho Bang, Kwangjin Choi, Jisong Kim, Dongsuk Kum,
and Jun Won Choi. Radardistill: Boosting radar-based ob-
ject detection performance via knowledge distillation from
lidar features. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15491–
15500, 2024. 7

[3] Yukang Chen, Jianhui Liu, Xiangyu Zhang, Xiaojuan Qi, and
Jiaya Jia. Voxelnext: Fully sparse voxelnet for 3d object de-
tection and tracking. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
21674–21683, 2023. 7

[4] Wencan Cheng and Jong Hwan Ko. Bi-pointflownet: Bidi-
rectional learning for point cloud based scene flow estima-
tion. In European Conference on Computer Vision, pages
108–124. Springer, 2022. 2, 4

[5] Jianning Deng, Gabriel Chan, Hantao Zhong, and Chris Xi-
aoxuan Lu. Robust 3d object detection from lidar-radar
point clouds via cross-modal feature augmentation. In 2024
IEEE International Conference on Robotics and Automation
(ICRA), pages 6585–6591. IEEE, 2024. 7

[6] Fangqiang Ding, Zhijun Pan, Yimin Deng, Jianning Deng,
and Chris Xiaoxuan Lu. Self-supervised scene flow estima-
tion with 4-d automotive radar. IEEE Robotics and Automa-
tion Letters, 7(3):8233–8240, 2022. 2, 6, 7, 1

[7] Fangqiang Ding, Andras Palffy, Dariu M Gavrila, and
Chris Xiaoxuan Lu. Hidden gems: 4d radar scene flow
learning using cross-modal supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9340–9349, 2023. 2, 5, 6, 7, 1, 3, 4

[8] Fabian Duffhauss and Stefan A Baur. Pillarflownet: A real-
time deep multitask network for lidar-based 3d object detec-
tion and scene flow estimation. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 10734–10741. IEEE, 2020. 2, 3

[9] Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural
network for moving point cloud processing. arXiv preprint
arXiv:1910.08287, 2019. 5, 2

[10] Wolfgang Kabsch. A solution for the best rotation to re-
late two sets of vectors. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General Crys-
tallography, 32(5):922–923, 1976. 2, 1

[11] Ishan Khatri, Kyle Vedder, Neehar Peri, Deva Ramanan, and
James Hays. I can’t believe it’s not scene flow! In European
Conference on Computer Vision, pages 242–257. Springer,
2025. 3, 4, 7

[12] Jaeyeul Kim, Jungwan Woo, Ukcheol Shin, Jean Oh, and
Sunghoon Im. Flow4d: Leveraging 4d voxel network for
lidar scene flow estimation. IEEE Robotics and Automation
Letters, 2025. 2, 7, 3

[13] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
step3d: Model unrolling for self-supervised scene flow es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4114–
4123, 2021. 2, 6, 7, 4

[14] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 12697–12705, 2019. 3, 4

[15] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 529–537, 2019. 1, 2, 4

[16] Zhe Liu, Jinghua Hou, Xinyu Wang, Xiaoqing Ye, Jingdong
Wang, Hengshuang Zhao, and Xiang Bai. Lion: Linear
group rnn for 3d object detection in point clouds. Advances
in Neural Information Processing Systems, 37:13601–13626,
2024. 7

[17] Zhijun Pan, Fangqiang Ding, Hantao Zhong, and Chris Xi-
aoxuan Lu. Ratrack: moving object detection and tracking
with 4d radar point cloud. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 4480–
4487. IEEE, 2024. 7

[18] Guangming Wang, Xinrui Wu, Zhe Liu, and Hesheng Wang.
Hierarchical attention learning of scene flow in 3d point
clouds. IEEE Transactions on Image Processing, 30:5168–
5181, 2021. 2, 3, 4, 7, 8, 5

[19] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
Pv-raft: Point-voxel correlation fields for scene flow estima-
tion of point clouds. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6954–6963, 2021. 2, 4

[20] Benjamin Wilson, William Qi, Tanmay Agarwal, John
Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen
Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel
Pontes, et al. Argoverse 2: Next generation datasets for
self-driving perception and forecasting. arXiv preprint
arXiv:2301.00493, 2023. 3

[21] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 5, 1

[22] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-
) supervised scene flow estimation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part V 16, pages 88–107.
Springer, 2020. 1, 2, 3, 4, 7

[23] Qingwen Zhang, Yi Yang, Heng Fang, Ruoyu Geng, and
Patric Jensfelt. DeFlow: Decoder of scene flow network
in autonomous driving. In 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2105–2111,
2024. 2, 7, 3, 4

[24] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XII 16, pages 311–329. Springer, 2020. 3

	Addntional Implementation Details
	Further Model Details
	Ego-Motion Head Details
	TARS-ego and TARS-superego
	Pseudo‑Code
	Reproduced LiDAR‑Model Details
	Dual‑Task Network Training Strategy
	Object Detection Branch Details

	Additional Ablation Studies
	OD Branch Ablation Study
	Class-wise Scene Flow Evaluation
	Comparison with Fully-supervised Methods
	Emergency‑Scenario Analysis

	Efficiency Analysis
	Evaluation Metrics & Loss Functions
	Evaluation Metrics
	Weakly-Supervised Loss Functions

	Discussion on the Joint Network

