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In this supplementary material, we provide more im-
plementation details, ablation study, and qualitative vi-
sualization. Sec. A details more implementation details
of our Temporal Unlearnable Example (TUE) genera-
tion, the UE baseline w/ context noise optimization, and
compared off-the-shelf UE approaches. Sec. B illus-
trates the evaluation metrics and datasets used in the
tasks of VOT, Video Object Segmentation (VOS), and
long-term Point Tracking. Sec. C presents more quanti-
tative results, including additional ablation experiments,
attribute analysis on LaSOT [9], transferability to long-
term Point Tracking, as well as the robustness against
the annotation noise. Sec. D shows more qualitative vi-
sualization of attention weights, generated perturbation
noises, and Temporal Unlearnable Examples (TUEs).
Finally, we discuss the limitations and future work in
Sec. E.

A Implementation Details

In this section, we introduce additional implementation
details in terms of offline TUE generation, UE base-
line w/ context noise optimization and compared off-the-
shelf UE methods.

A.1 TUE Generation
We optimize the generator via the Algorithm 1 of the
main paper. After obtaining the learned TUE genera-
tor, we apply it to perform TUEs generation on exist-
ing tracking datasets [9, 13, 14, 20], which is illustrated
in Fig. F1. Specifically, following SiamFC [1], we
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first crop the template in each frame and use the gen-
erator to adaptively generate perturbation noise for each
frame. The generated perturbation noise is bounded by
∥δ∥∞ ≤ 8

255 , which is imperceptible to a human ob-
server according to previous studies in adversarial re-
search. We then interpolate and paste the generated
noises onto the target regions (i.e., indicated by bound-
ing boxes) for each frame.

A.2 UE Baseline w/ Context Noise
SiamFC crops the template z, capturing both the cen-
tral target region and surrounding context. The EM [12]
baseline in Eq. (3) of the main paper only optimizes the
target noise, neglecting the context, which is crucial for
temporal matching. To improve this, we propose incor-
porating the context for TUE generation:

argmin
θ

E(z,x)∼Dv
[min
δt,δc

L(fθ(ẑ) ∗ fθ(x̂), y)], (1)

s.t. ẑ = z+ E(ϕ(δt,bi), δc),

x̂ = Φc(x, E(ϕ(δt,bj), δc),bj),
(2)

where δc is the context noise with the same shape to δt,
E(, ) is the combination function to spatially combine
both target and context noises. The new paste function
Φc(, , , ) adds the context noise jointly with the target
noise into corresponding target-context regions in x. Fi-
nally, we optimize the noises via the alternative inner-
outer optimization, and obtain the optimized target and
context noise set, i.e., {δit, δic}ni=1 on all n clean videos.
The noises are first interpolated via the Bicubic interpo-
lation to meet the target and context size in each frame,
and then pasted onto the frame to obtain the perturbed
frame, which is similar to our TUE pipeline shown in
Fig. F1.
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Figure F1. Details of offline TUE generation via the learned
generator. We apply the TUE generator to perform TUEs gen-
eration on existing tracking datasets in an offline manner. The
generated TUEs are further used to train existing deep trackers.
For frames with multiple bounding boxes (i.e., the multi-object
scenarios in VOS and long-term point tracking), we generate
perturbations for each box and overlay them onto the original
frames to create TUEs.

A.3 Temporal Contrastive Learning
In Sec. 3.4 and Fig. 2(c) of the main manuscript, we
propose a Temporal Contrastive Loss (TCL) to make the
tracker rely more on the generated TUEs for temporal
matching. The proposed TCL Lcl(·) uses ẑ as the ex-
emplar, and treats the TUEs ê within the same video as
the positive sample. The clean templates h in the same
video and the other videos are regarded as the negative
samples (i.e., denoted as {e, z, e′, z′} in Fig. 2(c) of the
main manuscript), which can be detailed as:

Lcl = −log
exp(ẑ · ê/τ)∑N

i=1 exp(ẑ · hi/τ)
, (3)

where τ = 0.05 and N is the number of clean templates
in a mini-batch.

A.4 Off-the-Shelf UE Methods
For both LSP [23] and AR [15], we follow their de-
fault settings to generate 100 class-wise perturbations
with a shape of 3 × 127 × 127 and a bound of ℓ2 =
1× 127

32 × 127
32 to ensure comparability with other meth-

ods. For each video sequence, a perturbation tensor of
size 3× 127× 127 is randomly selected from the gener-
ated perturbations, interpolated, and applied to the area
of the bounding box.

EM [12] and TAP [11] are both optimization-based
UE approaches. For fair comparison, we optimize them
on the VOT task using the same surrogate model and
training dataset w/ our TUE. Specifically, for EM, we
build it as described in Sec. 3.2 of the main paper, and
optimize it w/ SiamFC on the GOT-10k dataset. For
TAP, following EM, we also employ SiamFC as the sur-
rogate model to generate uniform adversarial perturba-
tions for each video sequence with the bound ℓ∞ = 8

255 .

The interpolation and pasting process is identical to that
used for the other approaches.

B Evaluation Metrics and Datasets
In this section, we introduce the evaluation metrics,
training and testing datasets used in the tasks of VOT,
VOS, and long-term Point Tracking.

B.1 VOT Metrics
In the experiments of the main paper, we use standard
metrics proposed in existing tracking datasets [9, 13, 18]
for evaluation. Specifically, for OTB-100 [18], we re-
port both the distance precision rates at the threshold of
20 pixels (P) and the Area Under the Curve (AUC). For
GOT-10k [13], the average overlap (AO) scores, the suc-
cess rate (SR) at the threshold of 0.5 (SR0.5) and 0.75
(SR0.75) are employed for evaluation. Following previ-
ous works [17, 22], an additional metric of normalized
P (PNorm) is used for the LaSOT [9, 10] dataset.

B.2 VOS Metrics
We use the official evaluation metrics including J and
F scores, to evaluate VOS approaches. Note that J is
calculated as the average IoU between the prediction and
groundtruth masks. F measures the boundary similarity
measure between the prediction and ground-truth masks.
The J&F score is the average of the above two metrics.
For YTVOS-19 [20], J is calculated on testing videos
containing both seen and unseen target categories, re-
ferred to as J seen and J unseen, respectively. For all
the evaluation in this work, lower testing performance
indicates better training data privacy protection.

B.3 Point Tracking Metrics
We use the standard metrics in TAP-Vid benchmarks
[7] for evaluation, including Position Accuracy (δxavg),
Occlusion Accuracy (OA) and Average Jaccard (AJ).
δxavg quantifies the average positional accuracy of visi-
ble points, while OA represents the proportion of points
with correctly predicted visibility. AJ jointly calculates
position and occlusion accuracy. Following [7], we use
the stardard TAP-DAVIS dataset for evaluation.

B.4 Datasets
We use popular tracking datasets for training and eval-
uation. For VOT, we use the GOT-10k [13] training set
to train our TUE generator. We then generate TUEs on
the GOT-10k training set in an offline manner, in order
to train existing state-of-the-art trackers following their



Variants λ Prec. AUC

Clean - 79.2 58.6

TUE 0.0 19.9 (59.3↓) 17.6 (41.0↓)
TUE 0.01 15.9 (63.3↓) 14.3 (44.3↓)
TUE 0.05 13.5 (65.7↓) 11.4 (47.2↓)
TUE 0.1 17.9 (61.3↓) 16.0 (42.6↓)

Table R1. Ablation study on the effect of λ used in the tempo-
ral contrastive loss. Note that we use SiamFC [1] as the base
tracker for evaluation on OTB-100 [18]. Performance drops
are shown in brackets. The best results are shown in bold.

Metrics δxavg OA AJ

Clean 80.4 88.1 64.6
TUE 72.8 81.6 57.4

Table R2. Transfer to Long-term Point Tracking and evalu-
ation on TAP-DAVIS: TUE-DAVIS is used to train the base
DINO-Tracker [16]. Drop is smaller than VOT/VOS due to
the frozen DINOv2, reducing TUE impact.

UE Method DAVIS-17 Val YTVOS19-val OTB-100
J&F J F J&F Jseen Junseen AUC P

Clean 71.2 67.3 72.7 63.3 66.3 56.1 49.2 64.0
AR [51] 68.9 65.4 70.5 - - - 45.3 58.5
LSP [77] 65.7 62.9 68.6 - - - 23.5 31.0
EM [31] 64.0 61.0 67.0 57.5 59.4 51.1 21.9 29.8

TUE 50.1 46.8 53.4 42.4 42.7 36.9 9.5 15.7
TUE w/o BBox (30) 58.3 55.7 61.0 - - - - -
TUE w/o BBox (15) 55.5 52.1 58.9 51.9 52.5 45.6 18.9 26.5

Table R3. Results on VOS and VOT: respectively using STCN
and STARK-50 as the base trackers trained on DAVIS17 and
LaSOT with added perturbations from various UE methods.
“w/o BBox (k)” uses EdgeBox to generate k pseudo bboxes
per-frame.

standard training settings w/o modifications. The ob-
tained trackers are evaluated on the GOT-10k testing set,
LaSOT testing set, and OTB-100 using official toolkits
and the online evaluation server. For VOS, we generate
TUEs on DAVIS-17 [14] and YTVOS-19 [20] training
sets, which are further used to train VOS models includ-
ing STCN [5] and XMEM [4]. We evaluate the trained
STCN and XMEM on popular DAVIS-17 and YTVOS-
19 validation sets. We submit the results to the official
online server for YTVOS-19 evaluation.

C Additional Quantitative Results

For completeness, more ablation studies and attribute
performance analysis are included in this section.
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Figure F2. AUC (OTB-100) of STARK50 trained on TUE-
LaSOT with varying annotation noise (Gaussian noise added
to bbox coordinates) .

Trackers Variants Pasting Strategy OTB [18] GOT-10k [13]
AUC Prec. AO SR0.5 SR0.75

SiamFC
Clean - 58.6 79.2 35.5 39.0 11.8

TUE 1) Target Only 22.2 24.5 - - -
TUE 2) Target + Context 11.4 13.5 12.1 9.0 1.9

OSTrack
Clean - 67.4 89.4 71.0 80.4 68.2

TUE 1) Target Only 30.5 45.8 18.0 15.1 4.6
TUE 2) Target + Context 33.7 46.5 29.3 32.8 16.9

Table R4. Ablation study of using different pasting strategies
for TUE generation. ‘Target Only’ indicates pasting the gen-
erated perturbation noise to the target bounding box region
only. ‘Target + Context’ indicates the pasting includes the tar-
get context region in each frame. The best results are shown in
bold.

C.1 The Effect of λ
The hyper-parameter λ in (5) of the main paper controls
the balance between the temporal contrastive loss (TCL)
and the temporal matching loss. Here, we study the ef-
fect of λ in Table R1. An appropriate selection of λ leads
to significant improvements on data-privacy protection,
leading to larger testing performance drop on OTB-100
in terms of both precision and AUC metrics. This is be-
cause TCL makes larger distribution gaps between clean
and TUE videos, thus causing more tracking failures on
testing videos and ensuring better training video privacy.

C.2 The Effect of Pasting Strategies
In Table R4, we study two pasting strategies after ob-
taining the generated perturbation noise: 1) only pasting
the interpolated noise to the target bounding box region
in the frame; 2) the pasting covers both the target and
context regions. Interestingly, for scale regression-based
OSTrack [22], we find that the former strategy leads to
better data privacy performance, possibly because past-
ing the noise to the context region may cause ambigu-
ous scale regression, which hinders the scale regression
learning. In contrast, pasting noise only in the target
region may simplify scale matching across frames, lead-
ing to more severe over-fitting on scale regression learn-
ing. Therefore, for scale-regression based trackers, in-



Figure F3. Precision plots of different attributes on LaSOT [9]. We use STARK-S50 [21] as the base tracker, which is trained with
perturbed datasets (i.e., LaSOT + GOT-10k [13]) generated by AR [15], EM [12], LSP [23], and our TUE. Best viewed in color.
Our TUE significantly degrades the tracker trained on protected training video datasets, thus achieving lowest performance on all
attributes of LaSOT.

Figure F4. Visualization of the generated perturbation noises
on the first (left) and last (middle) frames of a randomly sam-
pled video (i.e., GOT-10k Train 000160) from the GOT-10k
training set. To emphasize the difference, the difference map
is shown on the right.

cluding OSTrack [22], DropTrack [17], SeqTrack [3],
MixFormer-CvT [6], STARK [21], AQATrack [19] and
HIPTrack [2], we paste the perturbation noises gener-
ated by our TUE and the other compared UE approaches
to the target region only in each video frame for fur-

ther tracker training. For the naive SiamFC w/o scale
regression, we find that pasting w/ the context region
lead to larger performance drop, which is mainly be-
cause SiamFC heavily relies on the context for temporal
matching.

C.3 Attribute Analysis

In this subsection, we expand the attribute analysis ex-
periments from our main paper to provide a more com-
prehensive evaluation of attribute performance on La-
SOT, which is shown in Fig. F3. Notably, the tracker
trained with TUEs exhibits the lowest performance
across all attributes of LaSOT, highlighting that TUEs
significantly impair tracker training and effectively pro-
tect the privacy of the training video data.
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Figure F5. Template-to-search attention weights visualization from TUE-DropTrack on clean videos (‘Clean’) and TUE-perturbed
videos (‘TUE’). Red and yellow rectangles are ground truth and predicted bounding boxes, respectively. The attention weights are
extracted from the 8-th and 12-th layers of the ViT in TUE-DropTrack.

Figure F6. Visualization of TUEs on VOT datasets. The video frames are sampled from both TUE-GOT10k and TUE-LaSOT. Red
boxes are ground truth bounding boxes.

C.4 Transfer to Long-term Point Tracking

Long-term point tracking is a dense tracking task which
aims to accurately track dense points in long-term
videos. Here we use our TUE generator, which is specif-
ically optimized with SiamFC on the VOT training set

(GOT-10k [13]), to perform zero-shot TUEs generation
on the TAP-DAVIS [11] dataset (TUE-DAVIS) based
on its mask annotations (similar to VOS). We then use
TUE-DAVIS to train the SOTA point tracker DINO-
Tracker [16], which is further evaluated on the clean
TAP-DAVIS [7] dataset. Although the most parame-



Figure F7. Visualization of TUEs on VOS datasets. The video frames are sampled from TUE-DAVIS17. For multiple targets in a
video frame, we apply our TUE generator to generate perturbation noise for each target.

ters in DINO-Tracker are frozen (i.e., the frozen DI-
NOv2 model) and the trainable parameters are limited
(∼7.6M), we can still observe the performance degra-
dation in Table R2 in terms of all the metrics. This
demonstrates that our TUEs is also effective for protect-
ing training video data-privacy in the dense long-term
point tracking.

C.5 Bounding Box Dependency

Our model generates TUEs using the bounding boxes of
protected objects within video frames as conditions. In
practical scenarios, users can manually annotate some
short videos. For long videos, similar to annotation
strategies in TrackingNet, users may readily use open-
source algorithms (e.g., using EdgeBox [24]) to gen-
erate k reliable pseudo bboxes in each video frame.
Similar to the VOS transfer experiment, we then apply
the TUE generator learned in VOT to generate TUEs
for each bounding box and paste them on the original
video frames for automatic video protection. Table R3
presents the VOT and VOS results using STCN and
STARK-50 as the base trackers trained on the DAVIS17
and LaSOT datasets, respectively. The results demon-
strate that our TUEs can be automatically generated (us-
ing naive EdgeBox to generate bbox proposals), elimi-
nating the need for user intervention. This variant ob-
tains competitive performance to our method and out-
performs previous approaches.

C.6 Robustness to Annotation Noise

We further examine the robustness of our model against
bounding box shift in the inference stage (Stage 2 in
Fig. 4 of the main manuscript). Fig. F2 shows that our
TUEs are robust to annotation noises, even under severe
noise conditions (std = 128), validating the feasibility of
using pseudo annotations. Future research could focus
on improving automatic bbox generation or enhancing
robustness to bbox noise. Nonetheless, our work repre-
sents an important first step in demonstrating the feasi-
bility of TUEs under ideal bbox conditions.

D Qualitative Visualization

In this section, we show more visualizations of attention
weights, perturbation noises and generated TUEs.

D.1 Visualization of Attention Weights

In Fig. F5, we visualize the attention weights extracted
from the 8-th and 12-th layers of ViT [8] used in
TUE-DropTrack trained w/ TUE-GOT10k. The tracker
trained w/ TUEs heavily rely on the region with the TUE
(the GT bounding box) for temporal matching, which in-
dicates that the tracker training severely over-fits on our
TUEs, which prevents the tracker from exploring origi-
nal data structure, thus ensuring training data privacy.

D.2 Visualization of Perturbation Noises

The generated perturbation noise on a randomly sam-
pled video from GOT-10k is are shown in Fig. F4. For
different frames, our TUE dynamically generates adap-
tive perturbation noise (as shown in the difference map
on the right), whereas other approaches, such as EM [12]
and TAP [11], apply a fixed video-wise UE across all
frames within a video.

D.3 Visualization of TUEs

We use ℓ∞=
8

255 bound for invisibility, and the PSNR of
TUEs on LASOT is 51.8. We show our TUEs on VOT
datasets in Fig. F6. The perturbation noises are pasted
to the target regions (red boxes) to obtain TUEs. The
TUEs on VOS datasets are shown in Fig. F7. Different
from VOT, there may exist multiple tracked targets in a
video frame. To adapt to these cases, we apply our TUE
generator to generate perturbation noise for each target
in the frame, and then paste them onto the corresponding
target regions in the frame. For overlap regions, we just
simply add the perturbations together.



E Limitations and Future Work
In this work, the proposed TUE generator is optimized
in the single object tracking task. While we have also
applied our TUE generator to the multi-object video ob-
ject segmentation (VOS) task and observed performance
degradation, demonstrating its task transferability, sev-
eral limitations remain: 1) our approach does not ex-
plicitly address the challenges of multi-object scenarios
in VOS, e.g., for the overlapped target regions in the
same video frame, we naively combine their perturba-
tion noises, which may not be optimal. The future work
should consider more about overlapped target regions,
since directly adding perturbation noises together may
disrupt their structural integrity; 2) To generate TUEs,
we convert VOS mask annotations into bounding box
annotations, which may lead to a loss of fine-grained
target details. Developing methods to directly gener-
ate mask-level perturbation noises would likely preserve
more detailed information and improve performance.

In addition, we are the first to prevent videos from
unauthorized tracker training, providing new baselines
and benchmarks for the tracking community. The future
work can focus on developing more robust video data
privacy protection approaches. Moreover, following the
attack community, some “defense” strategies can also be
designed for perturbation detection or removal.
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