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Physics-Based Character Control

** Appendix*®*

In this appendix, we include further implementation de-
tails for both training and inference in Sec.A. In Sec.B, we
detail the loss design for tasks utilizing loss-based guided
sampling. Sec. C presents the user study design, interface,
and complete results on text-to-motion alignment evalua-
tion. Finally, we discuss the limitations of our approach and
potential directions for future work.

A. Implementation Details

Architecture. The diffusion model is build with a 12-layer
causal transformer decoder with a hidden size of 768. The
input is a sequence with 32 frames, and the per-frame input
feature includes the 32-dim latent action embedding and the
366-dim state representation.

Training details. During training, we divide motion se-
quences into 32-frame clips with a stride of 8. If a clip con-
tains multiple text annotations, we randomly select one for
training. To improve transition smoothness between different
skills, we preprocess the annotations by removing “transition
to” and assigning the annotation of transition-phase motion
to the target motion.

We train the model with a batch size of 1024, a learning
rate of 1.5 x 10, 10k warm-up steps, and cosine learning
rate decay. The model undergoes training with 50 denoising
steps, taking approximately 10 GPU days on a single RTX
A100 over 15k epochs. Despite only a minor decrease in loss
as training goes on, we still observe continuous improve-
ments in policy stability and motion-semantic fidelity.

Inference details. At inference time, we use DDIM sam-
pling with 5 steps and apply the stabilization trick across all
applications.

(a) Text-Driven Control Policy: We empirically find that
a small stabilization noise level (1, 2, or 3) is sufficient for
achieving stable long-horizon control, whereas increasing it
further to 5 degrades stability. Therefore, we use a stabiliza-
tion noise level of 3 for all text-driven control experiments.

(b) Loss-Based Guided Applications: For challeng-
ing tasks that utilize loss-based guidance, we observe that
increasing the stabilization noise level helps stabilize the
guided denoising process. Intuitively, a strong task-specific
guidance signal may cause the denoised states to drift slightly
out of distribution, and a higher stabilization noise level mit-
igates this effect.

Moreover, we employ Monte Carlo guidance by estimat-
ing the gradient from multiple samples to reduce gradient

MC Samples N=1 N=3 N=5

Succ. Rate 26% 82%  98%
FPS 9.2 8.9 8.7

Table A.1. Ablation on the effect of Monte-Carlo Guidance (MCG)
on loss-based guided sampling for goal reaching task.

variance and stabilize the guided optimization process. With-
out Monte Carlo guidance, the optimization tends to be un-
stable, resulting in a low task success rate.

We analyze the effect of Monte Carlo guidance on the
goal-reaching task in Table A.1. With just 2 Monte Carlo
samples, the success rate significantly improves from 26% to
82%. Increasing the number of samples to 5 further enhances
performance, though at the cost of slightly reduced planning
efficiency.

B. Loss-guided sampling design details

Goal reaching. To facilitate this goal reaching process, we
design a loss function that encourages the predicted joint
position to be close to the target goal. Furthermore, to ex-
pedite goal achievement, we incorporate an orientation loss
that encourages the character to orient itself toward the goal.
Specifically, the loss function is defined as follows:
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where p and p? are the joint position and goal position, re-
spectively, and ¢ is the character root orientation, and wy , wa
adjust the strength of position guidance and orientation guid-
ance.

Velocity Control. For velocity control, we apply losses the
speed magnitude, the steering direction and also the orien-
tation direction to align the character’s oriention with the
target velocity. The loss function is formulated as follows:

t+H

G(X) = (wllllvel = IvII*

i=t+1
+ ws (1 — cosb,) + w3 (1 —cosb,)), 2)

where v;, v is the predicted velocity and the target velocity
respectively, and 6, is the angle between v, and v¥9, and 6, is
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Figure C.1. User study interface on the Amazon Mechanical Turk (AMT).

the angle between the character’s orientation and v9, ensur-
ing the agent faces the movement direction, and w1, ws, w3
balances the guidance strength of each term.

Dynamic Obstacle Avoidance. We employ a smooth SDF-
based loss with softplus smoothing, and for SDF computing
simplicity, we adopt for the sphere-like obstacle, and the
guidance loss is designed as follows,

t+H
G(X)= > log(1 +e (4m71) 3)
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where d; is the distance between the character’s root and
obstacle’s center in XY plane, and r is the radius of the
obstacle.

C. User study interface and more results

We conduct two user studies on Amazon Mechanical Turk
to evaluate motion semantic fidelity and motion quality sep-
arately.

For motion semantic fidelity, we follow the evaluation
protocol from SuperPADL [1]. Raters are presented with
four options per motion (three distractors and one ground
truth) and can also select "Nothing applies” or "Multiple
ones apply” to account for annotation ambiguity. To ensure
fair comparisons between our method and baselines, we use
the same text prompts for motion generation and provide
identical answer choices for each motion.

For motion quality, we ask raters to assess naturalness,
smoothness, and realism to make the results more inter-
pretable. All motions are initialized with a standing pose, and
we ask 3 independent raters to rate each motion. The user
study interface is shown in Fig. C.1, and in Table C.1, we
present the complete user study results on the text-to-motion
alignment evaluation.



User Response Ours CLoSD MM
Correct 563%  61.6%  42.9%
Wrong 14.2% 8.6% 16.6%

Nothing applies 23.8% 21.7% 35.1%

Multi apply 5.6% 7.9% 5.3%
Any Correct 927%  94.5%  79.3%
Majority Correct | 52.0% 65.3% 34.6%
All Correct 24.0% 25.1% 14.6%

Table C.1. Complete user study results on the text-to-motion se-
mantic alignment evaluation.

D. Limitations and future work

Inference inefficiency is a common limitation of diffusion-
based frameworks, making our method less efficient than
RL-based policies. For text-driven control, our framework
operates at approximately 10 FPS with autoregressive denois-
ing and 18 FPS with gradual denoising. However, improving
inference efficiency was not the primary focus of this work.
Recent advancements in diffusion-based kinematic motion
generation [2, 3] have demonstrated real-time interactive
motion generation. We believe that further optimizations in
diffusion model inference could enable our framework to be
applied to high-frequency, real-time control tasks.

While our model demonstrates robust control, balance
loss still occurs, particularly during highly dynamic actions
or due to poor timing in changing text instructions, leading
to skill transition failures and falls. Completely avoiding
falls is unrealistic due to the inherent challenges in bipedal
control tasks. Moving forward, we plan to incorporate a fall
recovery skill by collecting expert demonstrations on getting
up from the ground and leveraging an RL policy specifically
trained for this task to enhance the expert demonstration data
collection.

Another interesting capability for physics-based character
control is traversing different terrains, which is crucial for
real-world applications, such as robotics. Due to the lack of
terrain-specific data, achieving this under a behavior cloning
framework is not immediately feasible. However, reinforce-
ment learning-based policies can serve as a valuable data
generator for unseen scenarios, making it possible to explore
the potential of behavior cloning in this context.

Lastly, our current approach does not incorporate dex-
terous hand control for the character, limiting its applica-
tion in tasks like human-object interaction. However, our
framework can be extended to full-body character control,
including hand dexterity.
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