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6. Implementation details of VisTex-DINO and
other comparison methods

We also implemented VisTex-OVLM on GroundingDINO-T
[33], denoted as VisTex-DINO. The MSTB design mirrors
that of VisTex-GLIP, employing two "fully connected (fc) +
ReLU" layers. Based on the feature size and scale extracted
by the pre-trained GroundingDINO-T’s vision encoder, [
is set to 100. Since the intermediate features of Ground-
ingDINO have W values that vary with image size, we ap-
plied bilinear interpolation to also set W to 100. Ground-
ingDINO’s intermediate features are available at three scales,
making M = 3. MSTB is applied to both the image back-
bone and the feature enhancer of GroundingDINO-T, with
max pooling across stages used for non-parametric multi-
stage fusion. All other training settings are consistent with
those of VisTex-GLIP.

For the comparison methods, we selected recent top-
performing approaches, adopting published results where
available and reproducing results with recommended set-
tings on PASCAL VOC and MSCOCO when necessary.
Notably, to ensure a fair comparison, the weights used for
OWL-ViT and OWL-ViT v2 are "CLIP ViT-L/14" and "CLIP
B/16 ST+FT," respectively. These weights were chosen be-
cause they were not specifically trained to exclude categories
that might appear in MSCOCO or LVIS, making their pre-
training settings closer to those of the OVLM weights we
used. We used class names as the text prompt for all methods
that accept text prompts.

7. Performance on ODinW13 subsets

Following Sec. 4.3 of the main text, we provide detailed
transfer results on the ODinW13 subsets [31] in Tab. 10.
ODinW13 [29] is composed of 13 subsets from ODinW35,
spanning specialized natural domains such as aquarium
species, surgical instruments, and aerial imagery, among
others. Although the categories in these 13 datasets may ap-
pear in the pre-training dataset of OVLM, their performance
results still, to some extent, reflect the model’s capability in
real-world scenarios. The specifics of ODinW 13 are outlined
in Tab. 9. All methods, including ours, were trained on the
MSCOCO base set, treating downstream task sets as novel
sets and evaluating them with 2-shot support images. The
results are presented in the table below. These results further
validate VisTex-OVLM’s superior transferability across di-
verse domains, demonstrating its robustness and adaptability
in handling significant domain shifts.

8. Compatibility experiments on RegionCLIP
and FIBER

We evaluated VisTex on RegionCLIP [60] under a one-shot
setting using the Open-Vocabulary COCO and LVIS bench-
mark, where base and novel categories are disjoint (Tab. 6).
The zero-shot (ZS) results were adopted from the original
paper. In full fine-tuning (FF*), the model was fine-tuned
with support images from both base and novel classes. In
contrast, VisTex was trained only on base categories. Results
show that VisTex still improves RegionCLIP’s performance
on novel categories. Furthermore, we tested VisTex on an-
other object-level VLM, FIBER [5], under the same setting
as Table 1 in the main text, and present the results in Tab. 7
to further demonstrate its generalization ability.

Table 6. Performance on RegionCLIP [60].

Method COCO LVIS
Novel AP50 Base APS0 ANILAP50 | AP APr
regionCLIP-ZS 39.3 61.6 55.7 323 22
regionCLIP-FF* 61.1 62.7 61.9 452 36.1
VisTex-regionCLIP 65.3 68.2 67.4 47.8 403

Table 7. Performance on FIBER [5] (mAP if not specified).

Method LVIS MiniVal Unseen medical datasets
AP APr | MoNu CCRCC ConSeP LIDC Deeplesi
FIBER-ZS 35.8 29.5 0.3 0.6 1.3 0.1 0.3
FIBER-FF* | 484 3838 9.2 9.8 255 29.5 34.7
VisTex-FIBER | 49.6  41.6 10.5 114 26.8 329 36.4

9. Computational Overhead and Preprocess
Time

In Tab. 8, we report the computational overhead for process-
ing one image using GLIP-L on RTX3090 with one support
image, comparing it to MQ-Det and GLIP-FF. After an ini-
tial preprocessing step on the support image, textualized
visual tokens are stored for reuse. Thus, the actual inference
cost, aside from this initial preprocessing, remains identical
to that of the original OVLM. For fair and direct compar-
ison, the FLOPs and time corresponding to this one-time
preprocessing step are highlighted in blue in the table.

10. More ablation and visualization results

10.1. Multi-scale textualizing block

We assessed the impact of multi-scale textualization and the
parameter-sharing strategy (MSTB sharing), as shown in
Tab. 11. With scales indexed by j (e.g., "0" represents the
250 . QEO scale), results indicate that using multi-scale features
from the vision encoder better preserves OVLM’s object-text
alignment and boosts performance over single-layer features.



Table 8. Computational Overhead (Preprocessing costs: blue).

Method .. FLOPs #Param(Trainable) | Inference time
Training Inference
MQ-Det 717.46G 24325G 10.87M 0.553s
GLIP-FF* 653.15G 218.78G 397.59M 0.547s
VisTex-GLIP | 702.11G  17.75G+218.78G 8.38M 0.031s+0.547s
Dataset Objects of interest Train Val Test
PascalVOC Common objects (Pascal VOC 2012) 13690 3422 \
AerialDrone Boats, cars, etc. from drone images 52 15 7
Aquarium Penguins, starfish, etc. in an aquarium 448 127 63
Rabbits Cottontail rabbits 1980 19 10
EgoHands Hands in ego-centric images 3840 480 480
Mushrooms Two kinds of mushrooms 41 5 5
Packages Delivery packages 19 4 3
Raccoon Raccoon 150 29 17
Shellfish Shrimp, lobster, and crab 406 116 58
‘Vehicles Car, bus, motorcycle, truck, and ambulance 878 250 126
Pistols Pistol 2377 297 297
Pothole Potholes on the road 465 133 67
Thermal Dogs and people in thermal images 142 41 20

Table 9. The objects of interest for each subset and the image
number of each split in ODinW13.

MSTB sharing further reduces the required convolutional
weights, enhancing textualization effectiveness. MSTB shar-
ing creates synergy during training, easing the learning pro-
cess for mapping features of various scales into the same text
feature space and slightly improving performance,. MSTB
sharing saves 5.15M parameters and improves nAP by 1.2%
compared to non-sharing across scales.

10.2. Multi-stage fusion

Multi-stage fusion (MSF) merges features from multiple
encoder stages into a single textualized visual token. The
original GLIP has 8 stages. To maintain GLIP’s object-
text alignment, we map each stage’s visual features into the
BERT-derived text feature space using MSTB. As shown in
Tab. 12, using stages 1 — 8 yields the best performance,
while stages 1 and 1 — 4 perform slightly lower. However,
stages 5 — 8 or just stage 8 result in significant drops, likely
due to that as the neural network progresses, the features
become more high-level and abstract, making the mapping
learning more challenging. Continuously incorporating in-
formation from different stages starting from the lower layers
helps reduce the difficulty of learning the mapping.

10.3. Ablation on shot fusion mode

When integrating multiple shot features, there are various
fusion modes available. Tab. 13 presents the performance of
different fusion approaches. Experimental results indicate
that concatenation yields the best results, as it maximally
preserves the information from all shots, thereby preventing
information loss. Support samples provide detailed semantic
guidance for query prediction, and concatenation allows the
model to maintain the unique information of each shot while
utilizing data from multiple support samples. This method
helps GLIP better grasp the support sample distribution for

query prediction, enhancing performance.

10.4. Ablation on MSF

MSF’s innovation is its efficient use of OVLM’s multi-stage
object-text alignment without extra parameters. Tab. 12 in
the main text shows multi-stage fusion’s effectiveness. We
conducted an MSF ablation study in Sec. 10.4 using different
common fusion methods. Max pooling outperforms other
non-parametric fusion methods. This is because max pooling
can highlight the most informative features across stages
while reducing the negative impact of redundant noise.

10.5. Ablation on image prompt engineering

This ablation study (Tab. 15) followed the same experimental
setup outlined in the main text: (1) Conducted on VisTex-
OVLM in a 2-shot setting on MSCOCO using GLIP-L; (2)
mAP was reported for both base and novel classes, with
all other settings kept optimal. Several methods for prepro-
cessing and inputting image prompts were tested, following
CLIPSeg [36] settings unless specified. Experimental results
show that the "BG blur" technique performs best. It high-
lights the target object while preserving some background,
unlike "crop" and "baseline." Additionally, it avoids overlay-
ing original image pixels, preventing information loss.

10.6. More output visualization

We provide 10-shot output examples for VisTex-GLIP on
PASCAL VOC in Fig. 5. The settings are corresponded to
Tab. 2 in the main text.
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Figure 5. Visualization of VisTex-GLIP’s 10-shot object detection
results on PASCAL VOC. For simplicity, only detections of novel-
class objects are illustrated. The settings are corresponded to Tab. 2
in the main text.



Method AerialDrone Vehicles Aquarium Mushrooms Raccoon Packages Pothole Shellfish Rabbits Pistols Egohands Pascalvoc Thermal | Mean
Meta-DETR 16.5 325 182 36.1 342 314 228 282 36.6 34.1 352 30.1 37.1 30.2
DiGeo 226 373 25.1 492 414 442 267 39.8 47.0 387 41.6 422 39.7 38.1
DeFRCN 235 36.4 24.8 438 44.1 449 25.6 40.1 453 39.0 435 50.9 35.4 383
MFD 24.5 387 29.4 462 45.1 50.1 28.4 38.4 484 435 463 50.5 422 409
MQ-Det 21.2 36.5 30.0 453 41.1 41.6 283 375 46.9 44.1 39.7 48.4 403 385
VisTex-GLIP 274 412 333 50.7 46.7 55.2 30.1 46.0 496 511 55.9 51.2 47.8 45.1
Table 10. Detailed 2-shot transfer results on ODinW 13 subsets. The best values are highlighted in bold.
. 2-shot . . 2-shot
MSTB Scale (j)  A#ParM) (— 45 AP Engineering Method —Ap —
0 -8.34 47.1 470 47.1 <
0+1 736 | 488 487 492 baseline 163
wio sharing |  0+1+2 368 | 486 479 488 BG blur 49.6
0+1+2+3 1.23 489 470 495 dye object red in grays image | 19.5
0+1+2+3+4 5.15 49.2 485 50.6 add red object outline 28.3
sharing 0+1+2+3+4 0.00 50.3 48.6 518 crop 44.2
crop large context 30.8

Table 11. Ablation on multi-scale textualization and MSTB sharing.
A#Par(M) represents the parameter amount offset relative to the
optimal configuration. Best results are marked in bold.

2-shot
Stages | A#Par(M) AP DAP AP
1 -30.67 485 47.1 507
1-4 -16.93 48.8 4777 493
1-8 0.00 50.3 48.6 518
58 -16.93 232 307 13.6
8 -30.67 20.5 289 139

Table 12. Ablation on mapping and fusing different numbers and
sequences of stages. "i—j" indicates the stages used. A#Par(M)
represents the parameter amount offset relative to the optimal con-
figuration. Best results are marked in bold.

. 2-shot
Shot Fusion Mode AP DAP nAP
element-wise addition | 41.6 41 41.9
max 485 484 486
average 479 452 48.1
concat 50.3 48.6 518

Table 13. Ablation on shot fusion mode. Best results are marked in
bold.

. 2-shot
Stage Fusion Mode AP DAP nAP
element-wise Addition | 36.7 374 31.6
max 503 48.6 51.8
average 46.8 483 414
concat 394 393 394

Table 14. Ablation on MSF. Best results are marked in bold.

11. Output visualization for real-world down-
stream tasks

Fig. 8 and Fig. 6 present the output visualizations for real-
world downstream tasks, including ODinW13 subsets and
medical datasets (MoNu, LIDC, and Deeplesion).

The visualizations in Fig. 8 adhere to the settings de-
scribed in Sec. 4.3 of the main text, where all methods, in-

Table 15. Ablation on image prompt engineering methods. “Base-
line” indicates directly inputting the original image. "crop" means
cropping out the target region based on ground truth bounding box
while "crop large context" enlarges ground truth bounding box by
k = 10 pixels. "BG blur" technique applies a shadow (intensity of
0.1) and Gaussian noise (kernel size of 15 and a standard deviation
of 3) to the background area. Best results are marked in bold.

Figure 6. Output visualizations for medical datasets. The first row
illustrates the inference results when models trained solely on the
MSCOCO base set were directly applied to the medical datasets.
The second row demonstrates results after briefly fine-tuning the
MSTB in a 2-shot setting on the medical tasks. (a) LIDC, (b)
Deepleision, (¢) MoNu. Green, red, and yellow boxes denote true
positives, false positives, and false negatives.

cluding ours, were trained on the MSCOCO base set. Down-
stream task sets were treated as novel sets, and evaluations
were conducted using 2-shot support images, directly show-
casing inference results on novel classes.

Fig. 6 focuses on datasets with larger domain gaps, specif-
ically medical datasets. The first row illustrates the inference
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Figure 7. Failure cases. (a) GLIP-ZS, (b) GLIP-FF, (d) GLIP-
MaPLe, (¢) MQ-Det, (f) VisTex-GLIP. Green, red, and yellow: true
positives, false positives, and false negatives.

results when models trained solely on the MSCOCO base
set were directly applied to the medical datasets. The second
row demonstrates results after briefly fine-tuning the MSTB
in a 2-shot setting on the medical tasks.

We also provide some failure cases of our method on
natural images in Fig. 7. As shown, these failures primarily
occur in scenarios with dense or small objects, which is
similar to the challenges observed in medical images in
Fig. 6. We attribute this limitation to the weak representation
of small objects in the pre-trained OVLM and the inherent
difficulty of fitting novel category distributions with limited
support samples. Addressing these issues will be a focus of
future research.



Figure 8. Comparison output visualizations on ODinW13. From top row to the bottom: Aquarium, AerialDrone, Rabbits, EgoHands,
Mushrooms, PascalVOC, Packages, Pistols, Pothole, Raccoon, Shellfish, Thermal, Vehicles. (a) Meta-DETR, (b) DiGeo, (c) DeFRCN, (d)
MEFD, (e) MQ-Det, () VisTex-GLIP. Green, red, and yellow boxes denote true positives, false positives, and false negatives.



