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In this supplementary material, we present additional im-
plementation details, extended results, and ablation studies.

A. Video Results
We include video results showcasing multiple sequences
from both KITTI-360 and Waymo, available on our project
website. The videos illustrate per-frame volumetric recon-
structions for our method alongside several baseline ap-
proaches.

B. Implementation Details
Model training. Our view completion model is built upon
Stable-Diffusion-2.1-unCLIP, employing the standard Con-
trolNet architecture for conditioning. For training data syn-
thesis, we render novel views at a resolution of 192 × 360,
followed by re-rendering the input views at 192 × 288,
which are then upscaled to 512 × 768 to approximate
the resolution used during the original training of Stable-
Diffusion. The input image is derived from the re-rendered
view. We use DDIM sampling during training and evaluate
the model using UniPCMultiStep sampling with five steps.
The training is initialized from the official Stable-Diffusion
weights and runs for 20 epochs with a batch size of 20 and
a constant learning rate of 10−5. During ControlNet train-
ing, UniDepth is used for depth prediction. However, sub-
sequent experiments showed that Metric3D yields more ac-
curate predictions than UniDepth; therefore, we adopt Met-
ric3D for training the scene reconstruction model model. To
construct the pseudo-volume, we employ 48 coarse sam-
ples, 16 fine samples, and 16 ray samples placed within
σ = 2 of the estimated depth.

The scene reconstruction model architecture utilizes the
ResNet50-based U-Net backbone from Behind the Scenes.
To ensure stability in mixed-precision training, batch nor-
malization layers are added to the decoder portion of the
backbone. The backbone outputs a frustum-aligned density
grid of dimensions 192× 640× c, where c ∈ 64, 128, with

an inverse growth pattern along the z-axis. The resulting oc-
cupancy field has a resolution of Z = 64, inversely spaced
between depths of 3m and 50m.

Training is conducted using the UniPCMultiStepSched-
uler, with automatic mixed precision (AMP), caching, and
batch size increases beginning from the second epoch.

Ground truth for evaluation. For each timestamp, a 3D
occupancy grid is generated by removing all voxels that
contain points from 300 consecutive LiDAR sweeps. The
overall reconstruction accuracy (Oacc) is computed within a
cuboid defined by x = [−4m, 4m], y = [−0.75m, 0m],
and z = [4m, 20m] in the input camera’s coordinate
frame. Given the higher frequency of dynamic objects in
the Waymo dataset, we accumulate 300 LiDAR sweeps and
retain occupancy only within the ground truth 3D bounding
boxes. For Waymo, evaluation is performed on the valida-
tion set, as 3D bounding box annotations are not available
in the test set.

Additionally, the metrics IEacc and IErec quantify the
reconstruction’s accuracy and recall, respectively. These
metrics are particularly important as they measure recon-
struction quality beyond what a monocular depth estimation
(MDE) model can typically achieve.

C. Comparison With Render-Refine-Repeat
Methods

Depth-based warping and inpainting are also used in other
render-refine-repeat (RRR) works. These approaches gen-
erally tackle the Text-to-3D task and focus exclusively on
novel view synthesis. We compare against two SOTA meth-
ods LucidDreamer and RealmDreamer (concurrent
work), which use a comparable StableDiffusion model as
us, and extract the geometry of the scene. For fairness, we
test images from their papers and from Waymo, as seen in
Fig. 1. There are to two main differences: 1) Due to the
focus on NVS, the resulting geometry is subpar, even for
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Figure 1. Render-refine-repeat Comparison. Occupancy reconstruction for different RRR methods against ours (marked blue).

Depth
gradients

Optical
flow PSNR ↑ Abs Rel ↓ RMSE ↓

✓ ✗ 20.920 0.133 0.093
✗ ✓ 18.707 0.179 0.121
✓ ✓ 18.933 0.179 0.118

Table 1. Qualitative occlusion detection strategies. Strategies
during inference in the novel view. at 192× 640 resolution

example images from their papers. Here, our synthetic oc-
cupancy field comes into play. 2) Because of the focus on
Text-to-3D rather than Image-to-3D, existing RRR methods
work well for images generated using the diffusion model
itself (often in cartoon or fantasy-style). Here, the diffu-
sion model can inpaint effectively even without finetuning.
However, when using real images, the inpainting produces
poor results. Our novel VCM with the corresponding warp-
based training solves this issue.

D. Additional Experiments
Quantitative effect of occlusions. We measure the effect
of the occlusion maps for different methods also quantita-
tively in Tab. 1. As observed in the main paper, the depth
gradient- based approach performs best.

Effect of Warp Distance and Occlusion Strategy on
VCM. As seen in Fig. 2, our gradient-based occlusion de-
tection strategy provides more precise masks (→ more vi-
sual context) than the flow-based baseline. Thus, the VCM
produces better synthetic views. When performing larger
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Figure 2. VCM. Gradient vs. flow-based occl. detection against
warp distance.

viewpoint changes, the quality degrades slightly. In our ex-
periments, novel view poses are on average ∼ 3m away
from the source view(s).

Statistical Importance. We report the mean and variance
where possible in Tab. 2 a). The variance remains within
limits, meaning that the final results are reliable.

Impact of supervision via the SOF. To test the effect
of our geometry synthesis independently of the VCM, we
build the synthetic occupancy field directly from real multi-
view data (the same as in BTS) and report the results in
Tab. 2 b). While the resulting geometry is better than the
one produced by BTS, it is still inferior to the geometry
resulting from the synthetic views produced by the VCM.
This suggests that both the VCM and our novel way of
obtaining scene geometry contribute to our strong perfor-
mance.

Inference Latency. While the SOF geometry is of high-



Method Oacc ↑ IEacc ↑ IErec ↑ Oacc ↑ IEacc ↑ IErec ↑

a)

BTS 920.64 694.24 648.37 950.74 6310.71 941.88

BTS-D 920.70 703.96 668.24 950.77 6111.66 961.11

Ours 930.49 723.51 746.67 970.35 736.82 961.35

Ours (Distilled) 900.86 713.84 719.00 960.43 727.10 932.69

b)
Ours 930.49 723.51 746.67 970.35 736.82 961.35

Ours w/ real MV 930.50 713.91 667.62 970.25 717.07 913.25

Table 2. Scene Reconstruction. a) Results on KITTI-360 / Waymo in % with variances. b) Comparing synthesized views vs. real multi-
view data for building the synthetic occupancy field.

quality, the generation process is costly at 5303 ms
frame on an

A100 GPU. The distilled scene reconstruction model only
takes about 75 ms

frame (>70x faster) and is real-time capable.
It also produces more stable results, while the original syn-
thesized geometry sometimes contains artifacts. Both as-
pects are crucial for the applications we target (autonomous
driving, robotics, etc.).
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