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Supplementary Material

The supplementary material is organized as follows:
• Sec. A: Dataset Details, including dataset statistics of our

benchmarks and the privacy attributes definitions.

• Sec. B: Implementation Details, including hyperparame-
ter settings, model architectures, and training procedures.

• Sec. C: Additional Experimental Results, including com-
prehensive ablation studies, same-domain evaluations,
and a model complexity analysis.

• Sec. D: Qualitative Results, including feature distribution
visualizations and anonymized frame examples.

• Sec. E: Visual Aid of Training and Evaluation, including
diagrams illustrating the core stages of our framework.

A. Datasets

UCF ↔ HMDB. The UCF↔HMDB benchmark was re-
leased by Chen et al. [1] for studying video domain adap-
tation in action recognition. This transfer benchmark com-
prises 3,209 action videos spanning 12 action classes. The
12 overlapping classes of these two datasets are shown in
Table S1. We use the official splits provided by Chen et
al. [1]. The five human privacy attributes, i.e., face, skin
color, gender, nudity, and familiar relationship, provided by
Li et al. [10], are used for training the privacy attributes pre-
dictor during adversarial learning. This transfer benchmark,
combining privacy attributes and overlapping action labels,
is named the TP-UCF↔TP-HMDB benchmark.

UCF HMDB

RockClimbingIndoor, RopeClimbing climb
Fencing fencing
GolfSwing golf
SoccerPenalty kick ball
PullUps pullup
Punch, Boxing(Punching/Speed)Bag punch
PushUps pushup
Biking ride bike
HorseRiding ride horse
Basketball shoot ball
Archery shoot bow
WalkingWithDog walk

Table S1. The overlapping action classes shared by UCF and
HMDB in the UCF↔ HMDB benchmark.

NEC-Drone ↔ Kinetics. This transfer benchmark, com-
posed of two datasets: NEC-Drone [2] and Kinetics [8],
comprises videos of 7 overlapping classes. The overlap-
ping label sets between NEC-Drone and Kinetics are listed
in Table S2. Our splits are based on the official train/test
splits provided by Choi et al. [2]. The Privacy-preserving
action recognition experiments in our work are conducted
in both Kinetics→NEC-Drone and NEC-Drone→Kinetics
settings, which is more challenging than UCF ↔ HMDB,
as the domain gap between source and target domains is
more significant due to the viewpoint variations introduced
by drone-captured footage.

NEC-Drone Kinetics

walking marching
running jogging, running on treadmill
jumping high jump, jumping into pool
drinking water from a bottle drinking beer
throwing an object throwing axe, throwing ball, throw-

ing discus, shot put, javelin throw
shaking hands shaking hands
hugging hugging

Table S2. Correspondences between action classes of NEC-Drone
and Kinetics for the same label set in source and target settings.

ARID ↔ HMDB. The ARID ↔ HMDB benchmark con-
sists of videos spanning 11 overlapping classes, selected
from ARID[17] and HMDB[9] datasets. These overlapping
classes include the following actions, i.e., Drink, Jump,
Pick, Pour, Push, Run, Sit, Stand, Turn, Walk, and Wave.
The splits are based on the official train/test partition pro-
vided by Xu et al. [17]. In this benchmark, we conduct
privacy-preserving action recognition experiments consid-
ering both ARID→HMDB and HMDB→ARID directions.
VISPR. We conduct cross-dataset training and evaluation
using VISPR[12] dataset. In our cross-dataset training and
evaluation setting, we utilize 7 privacy attributes commonly
present in the action video datasets mentioned above, as
selected and provided by Wu et al. [16]. These attributes
include semi-nudity, occupation, hobbies, sports, personal
relationships, social relationships, and safety. The multi-
attribute predictor is trained on VISPR to support adversar-
ial training and privacy-preserving evaluation.
Jester. We additionally conduct cross-dataset evaluation
on JesterS ↔ JesterT , a cross-domain and fine-grained
hand gesture recognition benchmark. Constructed by Lin
et al. [11] from the Jester dataset, this benchmark defines
transfer tasks over seven gesture classes, with the source



and target domains containing 51,498 and 51,415 video
clips, respectively. The primary challenge of this bench-
mark lies in leveraging temporal dynamics over solely spa-
tial cues for accurate recognition. For the experiments in
Sec C.5, we used a 10% subset of the official training
and testing data in a class-balanced manner to validate our
method’s transfer performance on temporal-dominant data.

B. Implementation Details
B.1. Architectural details of our anonymizer.
We implement our anonymizer fA adopting a VQGAN
video generation framework inspired by Ge et al. [7]. In
the pretraining process of fA, we follow [5] to stabilize the
training of the quantizer and its associated codebook, ensur-
ing that the updated embeddings in the codebook are close
to the selected codebook while preventing the encoder out-
put from deviating from the codebook. To improve the re-
construction quality, our reconstruction loss also incorpo-
rates perceptual and discrimination terms, a standard prac-
tice in generative models [5, 7]. We employ a quantized
encoder as it significantly improves domain transfer perfor-
mance. The results in Table S6 suggest that our vector quan-
tization constraint aids in learning robust action semantics,
thereby improving the cross-domain transfer performance
of the privacy-preserving action recognition model.

B.2. Implementation details for loss functions.
When calculating the Spatial Consistency Loss, Ls-cons, a
projector is used to map the features of the anchor, positive,
and negative samples to the same dimensional space. We
employ a domain projector with a Gradient Reversal Layer
(GRL), a technique well-established by DANN [6], and a
domain classifier for dynamic feature extraction and cal-
culating the Temporal Alignment Loss, Lt-align. The GRL
reverses the gradient’s direction during backpropagation.
This trains the encoder to generate dynamic features that
can confuse the domain classifier, thus making the extracted
dynamic features domain-invariant. This adversarial pro-
cess, optimized via our Temporal Alignment Loss, Lt-align,
results in robust dynamic representations that are aligned
across the source and target domains.

B.3. Training algorithm of our framework.
Let’s consider the models fA, fT , fB , parameterized by θA,
θT , and θB , respectively. DS is the source domain dataset
and DT is the target domain dataset. We summarize the
entire training process of our framework in algorithm 29.

B.4. Hyperparameter selection details.
To balance the impact of the action recognition loss,
(Lact) and privacy prediction loss, (Lpri) when updating the
anonymizer during adversarial training, we set the weights

Algorithm 1: GenPriv Framework

1 Inputs:
2 Source Dataset: DS = {(VS

i , Y
S
i , PS

i )}NS
i=1 ;

// Labeled Action and Privacy

3 Target Dataset: DT = {VT
i }

NT
i=1 ;

// Unlabeled

4 Epochs: max init epoch, max adv epoch
5 Learning Rates: αA, αT , αB

6 Hyperparameters: λst, λa, λp, ω
7 Output:
8 Anonymizer f∗

A, Action Recognizer f∗
T

9

10 Initialization:
11 Initialize θT with Kinetics400 weights.
12 Initialize θB with ImageNet weights.
13 Initialize θA as an identity function ;

// EncoderfE,DecoderfG,CodebooksCF,CT
14 for einit ← 1 to max init epoch do
15 Sample batch from DS
16 θA ← θA − αA∇θA(Lrec(θA) + Lact(θA, θT ))

17 end
18

19 Adversarial Learning:
20 for eanon ← 1 to max adv epoch do
21 Sample batch bS from DS and bT from DT
22 Step 1 Freeze θT , Freeze θB

23 θA ← θA − αA∇θA

[
λst(Lmi + Ls-cons + Lt-align)

24 + λaLact(θA, θT )− λpLpri(θA, θB)
]

25 Step 2 Freeze θA
26 θT ← θT − αT∇θTLact(θT , θA)
27 θB ← θB − αB∇θBLpri(θB , θA)

28 end
29 return f∗

A, f∗
T

for the Lact and Lpri losses λa and λt to 1.0 and 0.5, re-
spectively. The weight for spatial consistency and tempo-
ral alignment losses, λst, is set to 1.0. To ensure the real-
ism of the generated videos during anonymizer initializa-
tion training, we initialize the GAN discriminator from the
50th epoch. To avoid overly aggressive transformations on
the videos, we apply the reconstruction loss every 5 epochs.
The Mutual Information, Static Consistency, and Temporal
Alignment losses are introduced from the 10th, 15th, and
25th epochs, respectively. We set both the dynamic and
static embedding dimensions to 256, with the static code-
book containing 2,048 entries and the dynamic codebook
comprising 16,384 embeddings. The initialization process
is trained for 150 epochs, followed by 200 epochs of adver-
sarial training, with the privacy attributes predictor retrained
for evaluation for 50 epochs.
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Figure S1. Same domain training and evaluation results on V-Kinetics-NECDrone and V-ARID-HMDB Cross-Dataset Benchmarks.

B.5. Domain adaptive action recognizer training.

For our action recognizer fT , we use the R2plus1D-18 ar-
chitecture [14], pre-trained on Kinetics400 [8]. fT is initial-
ized using standard domain adaptation methods [1, 3, 6, 13].
Source and target domain features are aligned by maxi-
mizing the domain classification loss, which aims to im-
prove the action recognition model’s transferability. High-
confidence pseudo-labels are then used to augment the
training data. Finally, an entropy loss is applied to the clas-
sifier outputs, encouraging a more peaked probability dis-
tribution and enhancing domain adaptation. Following the
traditional unsupervised domain adaptation setting [1, 6],
unlabeled target domain videos are randomly selected, with
a batch size equal to that of labeled source domain data in
each training iteration.

C. Additional Experimental Results

C.1. Same domain training and evaluation results.

To verify that our privacy-preserving module is not solely
designed to achieve high action recognition performance in
the transfer setting, we also need to ensure that it maintains
strong action recognition performance in the same domain
training and evaluation setting.
Results on TP-UCF↔TP-HMDB benchmark. Table S3
presents the Top-1 action recognition accuracy and privacy
prediction results, including cMAP and F1 scores on TP-
UCF↔TP-HMDB benchmark trained and evaluated on the
source domain. The results indicate that our method effec-
tively maintains the action-privacy trade-off in the transfer
setting and the same domain training and evaluation setting.
Results on V-Kinetics-NECDrone and V-ARID-HMDB
cross-dataset benchmarks. The plots in Figure S1 show
the same domain training and evaluation results on V-
Kinetics-NECDrone and V-ARID-HMDB Cross-Dataset
Benchmarks, respectively, demonstrating that the perfor-
mance of our model is comparable to existing PPAR meth-
ods under the same domain training and evaluation setting.

Method
TP-UCF TP-HMDB

Top-1 (↑) cMAP (↓) F1 (↓) Top-1 (↑) cMAP (↓) F1 (↓)

Raw data 98.24 72.51 59.19 94.16 68.47 55.23
VITA[16] 95.45 70.3 56.43 81.67 63.28 45.92
SPAct[4] 95.27 67.73 56.62 88.89 65.26 53.82
Ours 94.57 68.71 55.12 88.01 63.82 49.89

Table S3. Same domain training and evaluation results on our
TP-UCF↔TP-HMDB benchmark. Comparison of PPAR mod-
els trained and evaluated on the same domain. Our method per-
forms competitive action recognition while maintaining effective
privacy preservation, comparable to existing approaches.

C.2. Model efficiency and complexity
We conducted a comparative analysis of model complexity
to demonstrate the efficiency of our proposed framework
and show that our performance gains are not solely due
to model scale. We introduce a smaller variant, GenPriv-
small, by reducing key parameters such as hidden feature
dimensions. As shown in Table S4, this lightweight ver-
sion still achieves a superior trade-off between task utility
(Top1 accuracy) and computational cost (FLOPs) compared
to prior privacy-preserving action recognition methods.

Method Params. FLOPs Top1H→U(↑) cMAPH→U(↓) Top1U→H(↑) cMAPU→H(↓)

VITA [38] 1.3M 166.0G 65.50% 70.60% 72.73% 64.25%
GenPriv-small 5.95M 111.11G 85.99% 68.36% 76.11% 65.37%
SPAct [9] 17.27M 160.32G 72.22% 66.47% 74.26% 64.89%
GenPriv 23.78M 406.71G 87.91% 67.42% 80.55% 64.84%

Table S4. Model efficiency and performance comparison. Our
lightweight variant maintains a competitive utility-privacy balance
with a notably lower computational cost (FLOPs).

C.3. Robustness of our anonymization function.
To further assess the robustness of our anonymization func-
tion, we evaluate the f∗

A on TP-UCF↔TP-HMDB using a
R3D action classifier and a R2plus1D privacy attributes pre-
dictor, both distinct from those used during training. As
shown in Table S5, GenPriv can still significantly reduce
the cMAP to 67.22% on the TP-HMDB→TP-UCF setting,
even with a novel video-based privacy attributes predictor.



This indicates that GenPriv effectively removes privacy-
sensitive information from the entire video.

Method TP-HMDB→ TP-UCF TP-UCF→ TP-HMDB

Top-1 (↑) cMAP (↓) F1 (↓) Top-1 (↑) cMAP (↓) F1 (↓)

Raw Video 86.16 72.31 58.70 80.83 67.41 54.92
VITA 83.32 71.88 55.97 68.06 66.03 52.43
SPAct 70.68 71.43 57.29 68.31 66.76 54.14
Ours 84.94 67.22 52.79 69.72 65.77 49.78

Table S5. Evaluate our f∗
A on unseen action and privacy models.

C.4. Analysis on the architecture designs.
To validate the design choice of our ST-VAE architecture,
we conducted an ablation study comparing it against sim-
pler alternatives. Our core innovation lies in the specific in-
tegration of ST-VAE within our generative decoupled learn-
ing framework. For a fair comparison, we adapted simpler
Autoencoder (AE) and Variational Autoencoder (VAE) ar-
chitectures to operate within our proposed framework. The
results in Table S6 show that these alternatives struggle to
achieve a good utility-privacy trade-off, while our ST-VAE
based method achieves significantly superior performance.

Method TP-HMDB→ TP-UCF TP-UCF→ TP-HMDB

Top1↑ cMAP↓ F1↓ Top1↑ cMAP↓ F1↓

Source Only 85.81 72.51 0.592 78.69 68.47 0.552
AE+triplet 61.65 66.7 0.521 53.06 63.19 0.509
VAE+triplet 65.0 66.04 0.513 63.61 62.07 0.503
Ours(ST-VAE) 87.91 67.42 0.519 80.55 64.84 0.527

Table S6. Ablation study on model architecture. Compared
to simpler alternatives like AE and VAE, our ST-VAE achieves a
substantially better utility-privacy trade-off.

C.5. Experiments on other action video datasets.
To demonstrate the robustness and generalizability of our
method on tasks that are more reliant on temporal dynam-
ics, we further validated our approach on the Jester-DG/DA
benchmark [13]. It is focused on fine-grained gesture recog-
nition, requiring a strong understanding of temporal infor-
mation. As shown in Table S7, our method demonstrates
superior transfer performance, which is attributed to Gen-
Priv’s ability to preserve and align action-related dynamic
features across domains.

Method JesterS → JesterT JesterT → JesterS

Top1↑ cMAP↓ F1↓ Top1↑ cMAP↓ F1↓

Source Only 58.10 65.72 0.571 62.41 65.14 0.573
VITA[38] 44.76 63.36 0.556 41.91 61.69 0.545
SPAct[9] 45.24 62.02 0.545 42.38 61.93 0.531
Ours 49.87 60.87 0.441 53.81 57.17 0.472

Table S7. Performance on the temporal-dominant Jester bench-
mark.

VITA

SPAct  

Ours

TP-HMDB→TP-UCF TP-UCF→TP-HMDB

Figure S2. The comparison of t-SNE visualization with source
(blue) and target (red) distributions on TP-HMDB↔ TP-UCF.

C.6. Evaluation on diverse target domains

To further assess the generalization capabilities of our
framework, we conducted an exploratory multi-target do-
main transfer experiment. This more challenging set-
ting tests the model’s ability to generalize from a single
source domain to two different target domains simultane-
ously, providing a more rigorous evaluation of its robust-
ness to diverse domain shifts. Table S8 shows that Gen-
Priv exhibits superior generalization ability in action recog-
nition across multiple targets while maintaining comparable
privacy-preserving performance.

Method Sucf → Thmdb Sucf → Tkinetics Shmdb→ Tucf Shmdb→ Tkinetics
Top1↑ cMAP↓ Top1↑ cMAP↓ Top1↑ cMAP↓ Top1↑ cMAP↓

VITA[38] 71.81 63.32 76.60 55.62 67.37 70.65 75.94 57.76
SPAct[9] 65.25 64.44 70.09 63.72 63.39 67.87 73.21 61.75
[gray]0.95 Ours 80.55 64.84 81.25 60.71 87.91 67.42 79.46 58.56

Table S8. Multi-target domain adaptation results. Our GenPriv
shows strong generalization from a single source (S) domain to
multiple, diverse target domains (T ).
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Figure S3. Anonymized Frame Visualizations with GenPriv. Examples of anonymized video frames are presented for Biking, Basket-
ball, Pull Up, and Boxing, with source domain (top two rows) and target domain (bottom two rows). Every video shows 2 frames.

D. Additional qualitative results
Visualization of distribution. To verify that the action
recognition model optimized during the adversarial pro-
cess achieves stronger transferability on the target domain
compared to other models, we visualize the distribution
of both domains using t-SNE[15] to investigate how our
approaches bridge the gap between the source and target
domains. Specifically, we visualize the high-dimensional
video features extracted before the last fully connected (FC)
layer of the trained action recognition model. As shown in
Figure S2, the features extracted by our method from the
source and target domains achieve better alignment com-
pared to the other two methods. This provides qualitative
evidence of the transferability of our GenPriv framework.
Visualization of anonymized frames. Here, we present
visualizations of video frames transformed by our GenPriv.
As shown in Figure S3, our approach not only effectively
protects privacy-sensitive attributes but also significantly
preserves appearance and background information, which
are crucial for accurate action recognition.

E. Visual Aid of Training and Evaluation
This section visually details the three core phases of our
training and evaluation framework, as illustrated in Fig-
ures S4, S5, and S6.

• First, the adversarial training phase (Fig. S4): In this
stage, the anonymization module is trained with both

source and target domain videos. This stage uses source
domain action and privacy labels to ensure action-relevant
information is preserved while privacy-sensitive content
is removed, ultimately yielding the learned anonymiza-
tion function f∗

A and action recognition model f∗
T .

• Second, the privacy evaluation phase (Fig. S5): This
phase consists of retraining a privacy attributes predictor,
f∗
B , on the anonymized videos. To ensure a fair assess-

ment, this retraining is conducted using the same privacy
labels as the original training, allowing for a direct com-
parison of the predictor’s performance before and after
anonymization.

• Finally, the utility and budget evaluation phase (Fig. S6):
This stage measures the final performance[cite: 951]. In
this stage, the action utility and privacy budget are cal-
culated on anonymized target domain evaluation videos
using the trained action model f∗

T and the retrained pri-
vacy predictor f∗

B .
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Learned Action Recognizer 𝒇𝑻∗

Figure S4. (a) First phase: Adversarial Training. In the adversarial training phase, the anonymization module is trained with source and
target domain videos. Source domain action labels and privacy labels are used to ensure the reserving of action-relevant information while
removing privacy-sensitive information, ultimately yielding the learned anonymization function f∗

A and action recognition model f∗
T .
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(b)Second phase: Retrain for privacy evaluation Figure S5. (b) Second phase: Retrain for privacy evaluation. Retrain a privacy attributes predictor f∗
B on the anonymized videos for

privacy evaluation. The retraining is conducted using the same privacy labels as the original training, ensuring a fair comparison of the
predictor’s performance before and after anonymization.

(c)Third phase: Utility and Budget Evaluation
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Figure S6. (c) Third phase: Utility and Budget Evaluation. In the evaluation stage, action utility and privacy budget are measured on
anonymized target domain evaluation videos Xt,e using the action recognition model f∗

T and the privacy attributes predictor f∗
B , supervised

by the action labels Y t,e
action and privacy labels Y t,e

privacy (used only for evaluation).
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