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A. Overview

In this supplementary material, we provide a detailed ex-
planations of our TrafficLoc and the proposed Carla Inter-
section dataset. Additionally, we present extended experi-
mental results on the Carla Intersection dataset and KITTI
Odometry dataset [5], showcasing the robust localization
capabilities of our TrafficLoc and offering further insights
we gathered during the development.

We begin by presenting the localization performance of
our TrafficLoc on real-world datasets in Sec. B, and then
show more experimental results and comprehensive abla-
tion studies and analysis in Sec. C. In Sec. D, we outline
the data collection process and provide visualizations of our
Carla Intersection dataset. Sec. E describes the detailed el-
ements of the Fusion Transformer in the GFF module, fol-
lowed by Sec. F with implementation details of our network
architecture and training procedure. Finally, Sec. G offers
additional visualizations of our localization results across
different datasets.

B. Evaluation on the real-world datasets

Figure 1 presents the qualitative localization result of our
TraffifLoc on a real-world intersection from the USTC
dataset [14]. Since the ground-truth pose is unavailable,
we validate localization accuracy by projecting the point
cloud onto the image plane with the predicted transforma-
tion matrix [R|t] and intrinsic parameters K. The close
alignment between the projected point cloud and the input
image demonstrates strong Sim2Real generalization capa-
bility of our approach.

We further evaluate TrafficLoc on the OpenTraffic-
Cam dataset [16], where intersection point clouds are re-
constructed using COLMAP [13] following the official
pipeline. As shown in Fig. 2 (a), our TrafficLoc maintains
reasonable localization performance. Since the OpenTraf-
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Figure 1. Localization performance of our TrafficLoc on the
USTC intersection dataset [14]. Note that the model is trained
on the synthetic Carla Intersection dataset.

Figure 2. Additional localization results and failure case visual-
izations of our TrafficLoc on the Carla Intersection dataset and
OpenTrafficCam dataset [16].

ficCam dataset does not publicly release the specific data
used in their experiments, we reconstructed one real-world
traffic intersection scene using their provided scene recon-
struction pipeline and align the scene with the real-world
scale from GPS coordinates. Due to the sparsity of the
point clouds obtained from COLMAP [13] and the result-
ing modality gap compared to real-world LiDAR data, we
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CM FM GAL TestT1−T7 TestT1−T7hard TestT10

RRE(◦) RTE(m) RRE(◦) RTE(m) RRE(◦) RTE(m)

Baseline

NCL / / 1.53 0.82 3.79 1.98 7.35 7.47
ICL / / 1.27 0.74 3.72 1.87 4.09 3.26
ICL / ✓ 0.95 0.64 3.12 1.46 3.03 2.86

ICL + DTA / / 1.01 0.62 3.23 1.65 2.99 2.80
ICL + DTA ✓ / 0.84 0.62 3.17 1.42 2.98 2.83

Ours ICL + DTA ✓ ✓ 0.66 0.51 2.64 1.13 2.53 2.69

Table 1. Ablation Study on loss function and model design. We report median RRE and median RTE results on all three test splits of Carla
Intersection dataset. CM denotes Coarse Matching and FM denotes Fine Matching. “NCL” means using normal contrastive learning,
while “ICL” means using the proposed Inter-intra Contrastive Learning. “DTA” indicates using the proposed Dense Training Alignment.
“GAL” represents applying the proposed Geometry-guided Attention Loss.

further performed dense reconstruction to bridge this dis-
crepancy. The camera poses optimized during the recon-
struction process were used as the ground truth poses.

C. More Ablation Studies and Analysis
In this section, we show more experimental results and ab-
lation studies to evaluate the effectiveness of different pro-
posed components in our TrafficLoc.
Geometry-guided Attention Loss (GAL). As shown in Ta-
ble 1, the model incorporating GAL consistently outper-
forms its counterpart without GAL across all three test splits
of the Carla Intersection dataset. Notably, when evaluated
on images with unseen pitch angles from the TestT1−T7hard

split, TrafficLoc achieves remarkable 20.4% improvement
in RTE (see the last two rows), highlighting the robustness
of GAL to viewpoint variations.
Inter-intra Contrastive Learning (ICL). The first and sec-
ond rows of Table 1 present the ablation study results com-
paring ICL and normal contrastive learning (NCL). When
using NCL in coarse matching, the model exhibits rela-
tively high error across all three test splits, particularly on
TestT10 which features an unseen world style. Leveraging
ICL significantly improves performance, achieving 44.3%
and 56.3% gains in RRE and RTE on TestT10, respectively.
This enhancement brings the localization accuracy in un-
seen scenes from an unseen world style to a reasonable
level, making reliable localization feasible.
Dense Training Alignment (DTA). The second and fourth
rows of Table 1 present the ablation study results of DTA,
which facilitates global image supervision by allowing gra-
dients to back-propagate through all image patches via soft-
argmax operation. With the proposed DTA, we observe an
improvement of 26.9% and 14.1% in RRE and RTE, re-
spectively, on TestT10.
Fine Matching (FM). The fine matching module re-
fines point-to-pixel correspondences within the point
group–image patch pairs derived from the coarse matching
results. As shown in the fourth and fifth rows of Table 1,
the fine matching module further enhances the model’s lo-

calization accuracy in seen world styles, achieving a 16.8%
improvement in RRE on the TestT1−T7 split.
More analysis of GAL. The ablation results for the
Geometry-guided Attention Loss (GAL) are summarized in
Table 2. We conducted experiments on the Carla Intersec-
tion dataset with GAL using different threshold parameters
and applying GAL across different layers of the Geometry-
guided Feature Fusion (GFF) module.

When the lower and upper threshold are set to the same
value (see the second and third row), the model performs
worse than not applying GAL, which highlights the im-
portance of defining a tolerant region that enables the net-
work to flexibly learn attention relationships for interme-
diate cases between the lower and upper thresholds. With
thresholds θlow, θup, dlow and dup set to 10◦, 20◦, 3m and
5m, our model consistently outperforms the baseline with-
out GAL across all metrics. Moreover, we observed that
applying GAL to either the first layer or all layers of the
GFF module yields worse localization results compared to
applying it only to the last layer. This is mostly because
such configurations constrain the network’s ability to cap-
ture global features during the early stages (or initial layers)
of multimodal feature fusion.
More analysis of ICL, DTA and GAL. To further ver-
ify the effectiveness of our Inter-intra Contrastive Learning
(ICL), Dense Training Alignment (DTA) and Geometry-
guided Attention Loss (GAL) in enhancing previous Image-
to-Point Cloud (I2P) registration methods, we integrated
them into the state-of-the-art CoFiI2P network [8]. We con-
ducted experiments on the KITTI Odometry dataset [5] to
assess the improvements. The experimental results shown
in Table 3 demonstrate that each module contributes posi-
tively to the improvement of localization accuracy. When
all three modules are employed together, we achieve the
best performance, with an improvement of 25.4% in RRE
and 27.6% in RTE.
Feature extraction backbone. Table 4 illustrates the re-
sults under different image and point cloud feature ex-
traction backbone. Our model performs best when using



θlow(
◦) θup(

◦) dlow(m) dup(m) Layer TestT1−T7 TestT1−T7hard TestT10

RRE(◦) RTE(m) RRE(◦) RTE(m) RRE(◦) RTE(m)

Baseline

/ / / / / 0.84 0.62 3.17 1.42 2.98 2.83
10 10 3 5 Last 1.24 0.80 3.49 1.53 6.07 7.45
10 20 3 3 Last 1.27 0.83 3.05 1.46 3.55 2.95
20 30 3 5 Last 0.91 0.59 2.71 1.27 3.05 2.78
10 20 5 7 Last 0.85 0.55 2.63 1.15 3.08 2.75
10 20 3 5 First 1.00 0.59 2.68 1.14 4.30 3.23
10 20 3 5 All 1.02 0.62 3.01 1.19 3.45 3.33

Ours 10 20 3 5 Last 0.66 0.51 2.64 1.13 2.53 2.69

Table 2. Ablation Study on Geometry-guided Attention Loss (GAL). θlow and θup denote the angular threshold for image-to-point cloud
(I2P) attention, while dlow and dup represent the distance threshold for point cloud-to-image (P2I) attention. “Layer” specifies the fusion
layer within the Geometry-guided Feature Fusion (GFF) module where GAL is applied.

Base model ICL DTA GAL RRE(◦) RTE(m)
CoFiI2P × × × 1.14 0.29
CoFiI2P ✓ × × 1.11 0.26
CoFiI2P × ✓ × 0.94 0.24
CoFiI2P × × ✓ 1.01 0.27
CoFiI2P ✓ ✓ × 0.94 0.22
CoFiI2P ✓ × ✓ 1.04 0.25
CoFiI2P × ✓ ✓ 0.85 0.22
CoFiI2P ✓ ✓ ✓ 0.85 0.21

Table 3. Experimental results on KITTI Odometry dataset [5]
based on current SOTA model CoFiI2P [8]. “ICL”, “DTA” and
“GAL” mean whether we add the proposed Inter-Intra Contrastive
Loss, Dense Training Alignment and Geometry-guided Attention
Loss into CoFiI2P, respectively. We report the mean RRE, mean
RTE, and RR metrics for comparison.

Img Encoder PC Encoder RRE(◦) RTE(m)

Baseline

ResNet [6] PiMAE [2] 1.25 0.87
ResNet [6] PT [19] 0.85 0.58

DUSt3R [17] PiMAE [2] 1.03 0.75
DUSt3R∗ [17] PT [19] 0.77 0.59

Ours DUSt3R [17] PT [19] 0.66 0.51

Table 4. Ablation study on feature extraction backbone. We re-
port median RRE and median RTE results on test split TestT1−T7.
DUSt3R∗ means using frozen DUSt3R backbone during training.

DUSt3R [17] and Point Transformer [19] as backbones,
benefiting from DUSt3R’s strong generalization ability.
Even with a frozen DUSt3R, the model achieves compara-
ble performance. In contrast, when using ResNet [6] or Pi-
MAE [2], the model’s performance declines due to the lack
of attentive feature aggregation during the feature extrac-
tion stage. When utilizing PiMAE, we load the pretrained
weights of its point encoder.
Localization with unknown intrinsic parameters. Abla-
tion results of localization with predicted intrinsic param-
eters are shown in Table 5. In the absence of ground-
truth intrinsic parameters during inference, we leverage
DUSt3R [17] to predict the focal length of the images.

The camera is assumed to follow a simple pinhole camera
model, with the principle point fixed at the center of the im-
age. When using predicted intrinsic parameters instead of
ground-truth focal length, the localization accuracy shows
a significant decline. However, enabling focal length re-
finement during EPnP-RANSAC [4, 10] yields notable im-
provement on TestT1−T7, while maintaining similar perfor-
mance on other two test splits. This suggests that refining
predicted focal length during pose estimation is more effec-
tive when the correspondences are of higher quality.
Block number of Fusion transformer. Table 6 shows
the experimental results of using different numbers of fea-
ture fusion layers NC in Geometry-guided Feature Fusion
(GFF) module. Our model achieves the best performance
when utilizing a four-layer structure.
Input point cloud size. We conducted ablation studies to
investigate the effect of input point cloud size on the rep-
resentation learning process. The number of coarse point
groups was fixed to M = 512, as these groups were gener-
ated using Farthest Point Sampling (FPS), ensuring uniform
sampling across the point cloud. As shown in Table 7, the
localization accuracy decreases with lower point cloud den-
sities, as overly sparse point cloud lose local critical struc-
tural details. On the other hand, higher-density point clouds
place a heavy computational burden. To balance computa-
tional efficiency and accuracy, we selected an input size of
20,480 points.

D. Carla Intersection Dataset

Our proposed Carla Intersection dataset consists of 75
intersections across 8 worlds (Town01 to Town07 and
Town10) within the CARLA [3] simulation environment,
encompassing both urban and rural landscapes. Town01
to Town07 include multiple intersections for training and
testing, while Town10 contains only one intersection for
testing. Specifically, we utilize the first Intersection sce-
nario from each world (e.g. Town01 Int1, Town02 Int1,
. . . , Town07 Int1, Town10 Int1) for testing, with all re-



GT Refine TestT1−T7 TestT1−T7hard TestT10

Focal Focal RRE(◦) RTE(m) RRE(◦) RTE(m) RRE(◦) RTE(m)

Ours
× × 2.04 1.72 4.56 2.19 4.61 4.80
× ✓ 0.95 0.80 3.74 2.36 3.88 5.06
✓ × 0.66 0.51 2.64 1.13 2.53 2.69

Table 5. Ablation study on localization with intrinsic parameters predicted by DUSt3R [17]. We report the median RRE and median RTE
across all three test splits of the Carla Intersection dataset. “GT Focal” refers to using the ground-truth focal length during inference, and
“Refine Focal” enables focal length optimization as part of the EPnP-RANSAC [4, 10] process.

Nc RRE(◦) RTE(m)

Baseline
2 0.96 0.55
6 0.73 0.59
8 0.88 0.58

Ours 4 0.66 0.51

Table 6. Ablation study on the number of feature fusion layers
Nc in Geometry-guided Feature Fusion (GFF) module. We report
median RRE and median RTE on test split TestT1−T7 of Carla
Intersection dataset.

Point Number RRE(◦) RTE(m) FLOPs
5120 0.86 0.68 126.73G
10240 0.81 0.62 146.38G
20480 0.66 0.51 185.73G
40960 0.59 0.52 264.35G

Table 7. Ablation study on the input point cloud size. We report
median RRE and median RTE on test split TestT1−T7 of Carla
Intersection dataset. The FLOPs is calculated during the inference
process.

maining intersections reserved for training.
Images. For each intersection, we captured 768 training
images and 288 testing images with known ground-truth 6-
DoF pose at a resolution of 1920x1080 pixel and a horizon-
tal field of view (FOV) of 90◦, equals to a focal length of
960. To generate these images, we sampled camera posi-
tions in a grid-like pattern with different heights at the cen-
ter of each intersection. For each position, we captured im-
ages at 8 yaw angles (spaced at 45◦ intervals) and 2 pitch
angles. Figure 3 shows the sampled poses for example in-
tersections.

Table 8 summarizes the image data collection details for
our Carla Intersection dataset. All training images were
captured with downward pitch angles of 15◦ and 30◦ at
heights of 6m, 7m, and 8m. Testing images in the test splits
TestT1−T7 and TestT10 share the same pitch angles as the
training images, but were captured at heights of 6.5m and
7.5m. Additionally, for the test split TestT1−T7hard, we
captured 288 additional testing images for each intersection
using the same positions as in TestT1−T7, but with different
pitch angles of 20◦ and 25◦, at heights of 6.5m and 7.5m.
These data capture settings closely reflect the real-world

Figure 3. Sampled testing image poses of (a) Town01 Intersec-
tion1 and (b) Town02 Intersection1.

traffic surveillance camera installations following HIKVI-
SION [7], ensuring typical positioning to provide optimal
traffic views under varied monitoring conditions. The dif-
ferences between three distinct test splits also allow us to
evaluate the model’s generalization ability across unseen in-
tersections and unseen world styles. Note that all testing
intersections were not seen during the training.
Point Clouds. To capture the point cloud of each in-
tersection, we utilize a simulated LiDAR sensor in the
CARLA [3] environment, which emulates a rotating LiDAR
using ray-casting. The LiDAR operates at a rotation fre-
quency of 10 frames per second (FPS), with a vertical field
of view (FOV) ranging from 10◦ (upper) to -30◦ (lower).
The sensor generates 224,000 points per second across all
lasers. Other parameters of the simulated LiDAR follow
the default configuration in CARLA Simulator. As shown
in Figure 4, the LiDAR scans were captured in an on-board
manner. Then, we accumulated all scans into a single point
cloud and downsampled it with a resolution of 0.2m. Fi-
nally, the point cloud for each intersection was cropped to a
region measuring 100m×100m×50m, focusing on the area
of interest for our study.

During the data capturing process, we disabled dynamic
weather variations and set the weather condition in CARLA
simulation environment to the default weather parameters
of world Town10. Some examples of our Carla Intersec-
tion dataset are shown in Figure 6. Our data collection
codes and datasets will be publicly available upon accep-
tance.



Training TestT1−T7 TestT1−T7hard TestT10

worlds Town01-07 Town01-07 Town01-07 Town10
# intersections 67 7 7 1
# images per scene 768 288 288 288
height (m) 6 / 7 / 8 6.5 / 7.5 6.5 / 7.5 6.5 / 7.5
pitch (◦) 15 / 30 15 / 30 20 / 25 15 / 30
seen intersection − × × ×
seen world − ✓ ✓ ×

Table 8. Image data collection details of the proposed Carla Intersection dataset. “# intersections” means the number of intersection
scenes in each split dataset and “# images per scene” means the number of images in each intersection scene. “Seen intersection” and
“seen world” represent whether the testing intersections are seen and whether the testing intersections are from the seen world during the
training process, respectively.

(a1) LiDAR Scan (b) Downsampled Point Cloud

10,548 points 663,291 points 276,740 points

(c) Cropped Point Cloud

10,437 points

(a2) LiDAR Scan

Figure 4. Point cloud capturing example from Town10 Int1. (a1) and (a2) depict the LiDAR scan from a single frame. (b) shows the
aggregated and downsampled point cloud. (c) presents the final cropped point cloud with dimensions of 100m×100m×100m.

E. Geometry-guided Feature Fusion
Our Geometry-guided Feature Fusion (GFF) module com-
prises of Nc transformer-based fusion blocks, each consist-
ing of a self-attention layer followed by a cross-attention
layer.

Given the image feature FI and point cloud feature FP ,
both enriched with positional embeddings, the self-attention
layer enhances features within each modality individually
using standard multi-head scalar dot-product attention:

Ḟ = Q+MHA(Q,K,V), (1)

where Q = K = V = F ∈ RNt×C denotes the Query,
Key and Value matrices, and F represents either FI or FP

depending on the modality. Within the MHA layer, the at-
tention operation is conducted by projecting Q,K and V
using h heads:

MHA(Q,K,V) = [head1, . . . , headh]W
O

headi = Attention(QWQ
i ,KWK

i ,VWV
i )

(2)

where WQ,K,V,O
i denote the learnable parameters of linear

projection matrices and the Attention operation is defined
as:

Attention(q, k, v) = Softmax(
q · k⊤√

dk
)v, (3)

where dk is the dimension of latent feature.
The cross-attention layer fuses image and point cloud

features by applying the attention mechanism across modal-
ities, following the same formulation as Equation 1. How-
ever, the Query, Key and Value matrices differs based on the
direction of attention. Specifically, for I2P (Image-to-Point
Cloud) attention, we use Q = FI and K = V = FP , while
for P2I (Point Cloud-to-Image) attention, we set Q = FP

and K = V = FI .
Layer Normalization is applied to ensure stable training.

For our GFF module, we set Nc = 4 and h = 4. Both the
input channel C and the latent dimension dk are set to 256.

F. Implementation Details

In Carla Intersection dataset, each intersection point cloud
represents a region of 100m×100m×50m and contains over
200,000 points. Following [15], as a preprocessing step,
we first divide each intersection point cloud into several
50m×50m×50m voxels with a stride of 25m. For each
voxel Vi, we assign an associated set of images {Ii} based
on the overlap ratio between the image frustum and the
voxel. Specifically, a voxel Vi is associated with an image
Ii if more than 30% projected points lie within the image
plane. During each training epoch, we uniformly sample B
images for each voxel from its associated image set, result-
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Figure 5. Qualitative results of our TrafficLoc and other baseline methods on the KITTI Odometry dataset [5]. (a1) shows predicted
correspondences and (a2) visualizes the point cloud projected onto the image plane. The first column provides the input point cloud, the
input image and the ground-truth projection for reference.

ing in B · Nv training image-point cloud pairs, where Nv

denotes the total number of voxels.
The input images are resized to 288 × 512, and the input

point cloud size is N = 20480 points. We utilize a pre-
trained Vision Transformer from DUSt3R ViT Large [17]
to extract the image feature. For coarse matching, we use a
resolution of 1/16 of the input resolution for image (s = 16)
and set the number of point group M = 512, with a coarse
feature channel size of C = 256. For fine matching, we
adopt a resolution of (H/2 × W/2 × C ′) for fine image
feature and (N×C ′) for fine point feature, where H , W and
N equal to input dimensions and the fine feature channel
size is set to C ′ = 64. As part of data augmentation, we
apply random center cropping to the input images before
resizing operation to simulate images captured by different
focal lengths. The input point cloud is first normalized into
a unit cube, followed by random rotations around the z-axis
(up to 360◦) and random shifts along the xy-plane (up to
0.1m).

The whole network is trained for 25 epochs with a batch
size of 8 using the Adam optimizer [9]. The initial learn-
ing rate is set to 0.0005 and is multiplied by 0.5 after every
5 epochs. For the joint loss function, we set λ1 = λ2 =
λ3 = λ4 = 1. The safe radius r, positive margin mp, neg-
ative margin mp and scale factor γ in loss function are set
to 1, 0.2, 1.8 and 10, respectively. For the Geometry-guided
Attention Loss (GAL), the angular thresholds θlow and θup
are set to 10◦ and 20◦, while the distance thresholds dlow
and dup are set to 3m and 5m, respectively. The training is
conducted on a single NVIDIA RTX 6000 GPU and takes
approximately 40 hours.

During inference, we utilize the super-point filter to se-
lect reliable in-frustum point groups from the fused coarse
point features Fcoarse

P , using a confidence threshold of 0.9.
In the coarse matching stage, we compute the coarse simi-
larity map between each point group and the image. Follow-
ing [18], a window soft-argmax operation is employed on

similarity map to estimate the corresponding coarse pixel
position. This involves first identifying the target center
with an argmax operation, followed by a soft-argmax within
a predefined window (window size set to 5). In the fine
matching stage, with the predicted coarse pixel position,
we first extract a fine local patch feature of size w×w from
the fine image feature and select the fine point feature of
each point group center, and then compute the fine similar-
ity map between each point group center and the extracted
local patch. Since the extracted local fine image patch has
a relative small size (w = 8), a soft-argmax operation is
applied over the entire fine similarity map to determine
the final corresponding 2D pixel for each 3D point group
center. Finally, we estimate the camera pose using EPnP-
RANSAC [4, 10] based on the predicted 2D-3D correspon-
dences. For cases where one single image is associated with
multiple point clouds, an additional EPnP-RANSAC step
is performed using all inliers from each image-point cloud
pair to compute the final camera pose.

For experiments on the KITTI Odometry [5] and
Nuscenes [1] datasets, we ensure a fair comparison by
adopting the same procedures as in previous works [8, 11,
12] to generate image-point cloud pairs.

In the KITTI Odometry dataset [5], there are 11 se-
quences with ground-truth camera calibration parameters.
Sequences 0-8 are used for training, while sequences 9-10
are reserved for testing. Each image-point cloud pair was
selected from the same data frame, meaning the data was
captured simultaneously using a 2D camera and a 3D Li-
DAR with fixed relative positions. During training, the im-
age resolution was set to 160×512 pixels, and the number
of points was fixed at 20480. The model was trained with a
batch size of 8 until convergence. The initial learning rate
is set to 0.001 and is multiplied by 0.5 after every 5 epochs.

For the NuScenes dataset [1], we utilized the official
SDK to extract image-point cloud pairs, with the point
clouds being accumulated from the nearby frames. The



dataset includes 1000 scenes, of which 850 scenes were
used for training and 150 for testing, following the official
data split. The image resolution was set to 160×320 pixels,
and the number of points was fixed at 20480.

G. More Visualization Results
In this section, we present additional examples of localiza-
tion results. Figure 5 and Figure 7 compare the localiza-
tion performance of TrafficLoc with other baseline methods
on the KITTI Odometry dataset [5] and all three test splits
of the Carla Intersection dataset, respectively. Our Traffi-
cLoc predicts a higher number of correct point-to-pixel cor-
respondences, and the point cloud projected with the pre-
dicted pose exhibits greater overlap with the image, demon-
strating superior performance.

We also include two failure cases in Fig. 2 for limita-
tion analysis. Fig. 2 (b) is from our synthetic Carla Inter-
section dataset. Although the model successfully matches
features in distinctive regions (e.g., electric pole and traffic
cones), the large low-texture grassy area in the image leads
to inaccurate pose estimation. Note that this scene was un-
seen during the training. The second case comes from the
OpenTrafficCam dataset [16] (Fig. 2 (c)). Due to the spar-
sity of the COLMAP-reconstructed point cloud in this area
and the resulting modality gap compared to LiDAR scans,
the model fails to extract expressive 3D features for reliable
matching.



(a1) Point Cloud of T1 Int1 (a2) Images of T1 Int1

(b1) Point Cloud of T2 Int7 (b2) Images of T2 Int7

(c1) Point Cloud of T3 Int4 (c2) Images of T3 Int4

(d1) Point Cloud of T4 Int5 (d2) Images of T4 Int5

(e1) Point Cloud of T5 Int7 (e2) Images of T5 Int7

(f1) Point Cloud of T6 Int7 (f2) Images of T6 Int7

(g1) Point Cloud of T7 Int2 (g2) Images of T7 Int2

(h1) Point Cloud of T10 Int1 (h2) Images of T10 Int1

Figure 6. Example point clouds and images data of our Carla Intersection dataset. T1 means Town01 and Int1 means Intersection1.
Since all instances of the Intersection1 scenario across different worlds are included in the test set, we focus on showcasing their testing
images (e.g. T1 Int1 and T10 Int1). For other intersections, we present the training images instead.
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Figure 7. Qualitative results of our TrafficLoc and other baseline methods on the Carla Intersection dataset. The point cloud is projected
onto a 2D view and displayed above the image, with point colors indicating distance. The proposed TrafficLoc achieves superior perfor-
mance, with more correct (green) and fewer incorrect (red) point-to-pixel pairs. (a1) shows predicted correspondences on TestT1−T7 and
(a2) visualizes the point cloud projected onto the image plane. Similarly, (b1) and (b2) show results on TestT1−T7hard, (c1) and (c2) show
results on TestT10. The first column provides the input point cloud, the input image and the ground-truth projection for reference.
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