
A Visualization of Attention Weights and Sparse Patterns

In Section 3, we conclude that the sparse patterns in the DiT model remain invariant across steps
but vary with respect to heads and layers. This conclusion is preliminarily validated through the
results presented in Figure 6a. In this section, to provide a more intuitive demonstration of the
aforementioned conclusion, we visualize some representative attention weights of HunyuanVideo
along with the search results of various patterns, as shown in Figures A, B, and C. Here, Oracle
denotes the theoretically optimal pattern, which is searched using the block pattern with a block
size of B = 1. The Oracle pattern serves only as a theoretical optimal guideline but is impractical
for real-world use since using B = 1 would lead to extremely low inefficiency in the attention
computation. Its highly dispersed nature is incompatible with GPU computation, leading to extremely
low processing efficiency and failing to achieve any acceleration.

From these figures, it is evident that although the specific values of attention weights may fluctuate
across time steps, the optimal pattern (Oracle) remains largely unchanged over time. Furthermore,
the visualized results clearly indicate that many heads do not follow a discernible structured pattern.
In such cases, applying static patterns or an approximate search based on dynamic patterns becomes
ineffective. It is also apparent from the figures that regardless of the complexity or lack of discernible
structure in the patterns, our blockified pattern achieves the closest approximation to the Oracle
pattern.
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(a) Layer0-Head0.
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(b) Layer0-Head6.

Figure A: (Part 1) The visualization of attention weight and different sparse patterns. These figures show a
clear invariance of sparse patterns with respect to steps.
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(a) Layer0-Head18.
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(b) Layer15-Head12.
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(c) Layer15-Head18.

Figure B: (Part 2) The visualization of attention weight and different sparse patterns. These figures show a clear
invariance of sparse patterns with respect to steps.
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(a) Layer30-Head12.
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(b) Layer45-Head6.
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(c) Layer45-Head18.

Figure C: (Part 3) The visualization of attention weight and different sparse patterns. These figures show a clear
invariance of sparse patterns with respect to steps.
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B More Experimental Results

B.1 Quality-Latency Trade-off

We provide a comparison of the trade-off between quality and latency, corresponding to Figure 9 in
the main text. The results show that under the condition of achieving the same quality, AdaSpa has a
significantly higher generation speed than other methods.
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Figure D: The trade-off between quality and latency.

B.2 Evaluation on Short-step Model

To accelerate the video generation process, there is a trend to distill long-step DiTs into short-step
variants that require fewer diffusion steps. To validate the effectiveness of AdaSpa in short-step
models, we consider the distilled 6-step model FastHunyuan (13B). We set γ = 0.85, B = 64, T =
{0}. The results are presented in Table A. It can be seen that AdaSpa still achieves the best
performance across all metrics while maintaining the highest speedup.

Table A: Quantitative evaluation of quality and latency for AdaSpa and other methods on FastHunyuan.
Method VBench (%) ↑ PSNR ↑ SSIM ↑ LPIPS ↓ Latency (s) Speedup

FastHunyuan (Full Attention) 43.79 - - - 372.13 1.00×
+ MInference 37.21 12.55 0.3908 0.5851 301.30 1.24×
+ Sparse VideoGen 43.34 14.11 0.4585 0.4838 252.01 1.48×
+ Frame region-wise 43.22 14.01 0.4432 0.5032 262.58 1.32×
+ AdaSpa (w/o Head Adaptive) 43.64 14.30 0.4585 0.4828 241.90 1.54×
+ AdaSpa (ours) 43.71 14.49 0.4784 0.4732 238.11 1.56×

B.3 Comparison with Other DiT Optimization Methods

We also conduct experiments to compare AdaSpa with other widely used training-free methods in
video generation, as shown in Table B.

Adaptive Cache (AdaCache) and Pyramid Attention Broadcast (PAB) are well performed cached-
based methods that cache and reuse intermediate activations instead of recomputing them at every step.
Token Merge (ToMeSD) is a strategies that consolidate near-duplicate tokens to shorten sequence
length.

Table B: Comparison with Other DiT Optimization Methods.
Method VBench (%) ↑ PSNR ↑ SSIM ↑ LPIPS ↓ Latency (s) Speedup

HunyuanVideo (Full Attention) 80.10 - - - 3213.76 1.00×
+ AdaCache 74.61 24.93 0.8070 0.2926 2124.32 1.51×
+ PAB 78.39 27.61 0.8683 0.1703 1791.02 1.79×
+ ToMeSD 70.55 14.03 0.3161 0.6606 1711.70 1.88×
+ AdaSpa (ours) 80.13 29.07 0.8905 0.1478 1810.23 1.78×

Cache methods yield high visual similarity (PSNR, etc.) due to its imitation of the original video, but
they often introduce pixel-level blur, lowering video quality (VBench). As for ToMeSD, its similarity
assumptions for UNet-based image models don’t generalize well to DiT-based video models, leading
to poor quality, though it shows good acceleration potential.
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C More Visualization Results of Generated Videos

In this section, we provide more visualization results of the generated videos of AdaSpa, MInference
(dynamic pattern + approximate search), and Sparse VideoGen (static pattern) in Figure E and F.
AdaSpa consistently achieves higher quality and generation speed than the counterparts.

Sparse VideoGen
PSNR = 27.61

Latency = 34 min

MInference
PSNR = 22.53

Latency = 42 min

AdaSpa (ours)
PSNR = 29.07

Latency = 30 min

Full Attention

Latency = 54 min

HunyuanVideo (129 frames, 720p)

Prompt: A female student in a gray coat slowly stands up in the rain. The 
entire video presents a melancholic atmosphere.

Prompt: A violent earthquake caused the ground to shake violently, and 
subsequently, a huge crack appeared in the ground.

Prompt: A green garbage truck is parked by the roadside. Several 
sanitation workers are cleaning the road behind the garbage truck.

Figure E: Comparison of the generated videos of different methods on HunyuanVideo.
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Sparse VideoGen
PSNR = 18.98

Latency = 34 min

MInference
PSNR = 18.51

Latency = 42 min

AdaSpa (ours)
PSNR = 23.25

Latency = 31 min

Full Attention

Latency = 52 min

Prompt: A space shuttle launching into orbit, with flames and 
smoke billowing out from the engines.

CogVideoX1.5-5B (161 frames, 720p)

Prompt: A beautiful coastal beach in spring, waves lapping on sand, Van Gogh style.

Prompt: A person is skateboarding.

Figure F: Comparison of the generated videos of different methods on CogVideoX1.5-5B.
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