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Appendix A.1 Dataset Details
PartImageNet OOD dataset. We use the OOD variant of PartImageNet [6] to validate MPAE, following the setting used
in [2, 14]. This variant comprises 110 classes distributed across 11 super-classes, including 14,865 samples for training and
1,658 samples for testing. Each sample is annotated with pixel-level part masks.
PartImageNet Segmentation dataset. This dataset is another variant of PartImageNet [6]. Compared to the OOD variant, it
is more challenging because the number of categories increases from 109 to 158, comprising 20,457 images for training and
2,405 images for testing.
CelebA dataset. CelebA dataset [10] contains 200,000 unaligned face images with 5 labeled keypoints, representing the eye
centers, the tip of the nose, and the corners of the mouth, for 10,000 different identities. Following the setting in [8], we retain
the images where face covers more than 30% of the area, resulting in 45,609 images for training, 5,397 images for validation
and 283 images for testing. This ensures the face to be the salient object in each image for subsequent part discovery.
CUB dataset. CUB dataset [15] consists of 200 different bird species with 5,994 images for training and 5,794 images for
testing. Each image is annotated with 15 keypoints and their visibility, representing 15 different bird parts.

Appendix A.2 Implementation Details
As in [7, 14], we set the input size to 448× 448 for CUB dataset and 224× 224 for other datasets to ensure fair comparisons.
For the datasets with multiple categories (PartImageNet OOD and PartImageNet Segmentation), the mini-group size is set
to 64. For the datasets with single category, the mini-group size is set to 8. All models employ a frozen ViT-B/14 pre-
trained using DINO v2 [11] and register tokens [4] to extract dense feature maps. Other parts of MPAE are trainable and are
optimized using Adam optimizer [5]. The learning rate, batch size, and feature dimension C are set to 5× 10−3, 64 and 256
respectively. The number of both MPAE encoder layers and decoder layers is set to 2. In all experiments, λp is set to 1.0, λd

to 0.5, and λs to 0.25. Referring to [16], we set s and m to 20 and 0.5, respectively, to ensure that each part descriptor is well
aligned with the pixel-level features that have very high similarity.

Appendix B.1 Influence of Structural Difference Penalty Component of Lr

Structural Difference
Penalty Component With Without

NMI (%) ↑ 55.10 19.65
ARI (%) ↑ 73.52 49.72

Table 1. Performance comparisons of MPAE with/without the structural difference penalty component of Lr on the PartImageNet Seg-
mentation dataset in the setting of K = 50.
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Figure 1. Some qualitative results of image restoration and part discovery predicted by the MPAE trained with/without structural difference
penalty component in Lr.

In addition to minimizing the differences between masked image patches and their corresponding restored patches, we em-
ploy a frozen pretrained VGG-19 [13] to penalize the structural difference between the masked and restored images. The
quantitative and qualitative impact of this structural difference penalty component is demonstrated in Table 1 and Fig. 1
respectively in Appendix B.1. This penalty plays an essential role in the training of MPAE, increasing the NMI and ARI
metrics from 19.65 and 49.72 to 55.10 and 73.52 respectively. From Fig. 1 in this supplementary file, we observe that the
part discovery results are highly consistent with the images restored using their learned part descriptors: restored patches
with similar views tend to be identified as the same part. This further supports the conclusion that MPAE implicitly clusters
the filled part descriptors and unmasked patch features within the same part regions by utilizing them to generate image
patches with similar appearances. Consequently, the low-level appearance features of the unmasked patches further align the
high-level semantics of the part descriptors with the corresponding part shapes. Without the structural penalty, significant
structural deviations can be observed between the input images and the restored images. This further results in a misalign-
ment between the part descriptors and the shapes of their corresponding parts, as well as similarity maps that do not closely
follow the part boundaries. Consequently, the MPAE fails to discover meaningful parts with consistent semantics, resulting
in performance degradation in all metrics.
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Appendix B.2 Influence of Encoder Layer Number

MPAE encoder
layer number 1 2 4 6

NMI (%) ↑ 50.71 55.10 55.12 55.43
ARI (%) ↑ 70.86 73.52 73.74 73.59

Table 2. Performance comparison of MPAE with different number of encoder layers on the PartImageNet Segmentation dataset in the
setting of K = 50. The number of MPAE decoder layers is fixed at 2.

We conduct ablation studies on PartImageNet Segmentation dataset (K = 50) to investigate the influence of the number
of MPAE encoder layers. The results are reported in Table 2 in Appendix B.2. When the number of MPAE encoder layers
increases from 1 to 2, the performance of MPAE improves from 50.71 to 55.10 in NMI. This is mainly because the expressive
ability of the MPAE encoder with only a single layer is insufficient to effectively encode the appearance of unmasked patches
in the latent space. Consequently, the high-level semantics from part descriptors and the low-level appearances are not well
aligned, leading to performance degradation. Nevertheless, when the number of encoder layers exceeds two, the MPAE
encoder can coherently encode the appearance of unmasked patches in the latent space. Therefore, the improvement gained
from increasing the number of encoder layers is relatively slight.

Appendix B.3 Influence of Decoder Layer Number

MPAE Decoder
layer number 1 2 4 6

NMI (%) ↑ 54.27 55.10 53.89 52.69
ARI (%) ↑ 73.32 73.52 72.43 71.81

Table 3. Performance comparison of MPAE with different number of decoder layers on the PartImageNet Segmentation dataset in the
setting of K = 50. The number of MPAE encoder layers is fixed at 2.

We also conduct ablation studies on PartImageNet Segmentation dataset (K = 50) to investigate the influence of the number
of MPAE decoder layers. The results are reported in Table 3 in Appendix B.3. Similarly, when the number of MPAE decoder
layers increases from 1 to 2, we observe improvements in all metrics. The primary reason is that increasing the number of
decoder layers from one to two improves image restoration results. Consequently, high-level semantics from part descriptors
become better aligned with the shapes of their corresponding parts. However, when the number of decoder layers exceeds
2, we observe slight performance degradation. This is because more decoder layers encourages the model to rely more on
the unmasked patch features for image restoration rather than part descriptors. As a result, the features within the same part
region on the filled feature map R are not well aligned with the part shapes.

Appendix B.4 Influence of λd, λp and λs

λd 0.3 0.4 0.5 0.6 0.7
NMI↑(%) 35.88 53.21 55.10 55.45 55.36
ARI↑(%) 31.39 72.89 73.52 74.85 73.93

λp 0.50 0.75 1.00 1.25 1.50
NMI↑(%) 53.50 55.55 55.10 53.46 52.68
ARI↑(%) 74.62 73.61 73.52 73.08 72.45

λs 0.15 0.20 0.25 0.30 0.35
NMI↑(%) 55.45 55.23 55.10 53.00 51.28
ARI↑(%) 74.59 75.48 73.52 69.34 68.75

Table 4. Influence of λd, λp and λs on PartImageNet Segmentation (K = 50)

We carry out ablation studies on PartImageNet Segmentation dataset (K = 50) to further investigate the influence of hyper-
parameters λd, λp and λs, as shown in Table 4 in Appendix B.4. Across a wide range of λd, λp and λs, MPAE consistently
maintains comparable performance, indicating that it is not sensitive to the selection of hyperparameters. Moreover, we keep
the hyperparameters fixed across all datasets in our paper, and MPAE still achieves competitive performance compared to
other state-of-the-art methods, illustrating its robustness.
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Appendix B.5 Influence of Different Self-supervised Pretrained Backbones

Backbone K=8 (%) K=25 (%) K=50 (%)
NMI ARI NMI ARI NMI ARI

DINO v1 [3] 26.86 63.70 32.89 69.75 39.12 70.08
DINO v2 [11] with [4] 32.90 66.17 39.28 68.87 53.65 74.22

Table 5. Performance comparison of MPAE with different self-supervised pretrained backbones on the PartImageNet OOD dataset in the
setting of K = 50. The number of MPAE encoder and decoder layers is fixed at 2.

We implement MPAE with DINO v1 (ViT-S/16) on PartImage OOD, and the results are reported in Table 5 in Appendix
B.5. Compared to direct clustering [1] and Xia et al. [16], which use similar backbone (DINO v1, ViT-S/8), our MPAE
with DINO v1 still outperforms them by a significant margin, demonstrating the effectiveness of our method. However, the
features produced by DINO V1 are not as fine-grained as those produced by DINO v2. Consequently, MPAE with DINO V1
fails to outperform MPAE with DINO v2.

Appendix B.6 Comparison with Supervised Pretrained Backbones

Backbone DINO v2
[11] with [4] SAM [9] CLIP [12]

NMI (%) ↑ 55.10 17.16 33.16
ARI (%) ↑ 73.32 55.26 72.90

Table 6. Performance comparison of MPAE with different supervised pretrained backbones on the PartImageNet Segmentation dataset in
the setting of K = 50. The number of MPAE encoder and decoder layers is fixed at 2.

We also implement MPAE on the PartImageNet Segmentation dataset using backbones pretrained in a fully supervised
manner, including the encoder of Segment Anything (SAM) and CLIP. The results are shown in Table 6 of Appendix B.6. The
training of SAM focuses on object boundaries rather than semantics, while CLIP mainly aligns instance-level descriptions
with global ViT features in the latent space. Neither of them can produce finer-grained part-level features compared to DINO
v2. Therefore, MPAE with DINO v2 achieves better performance, even though it is pretrained without any manual labels.

Appendix B.7 Influence of Mini-group Size

Dataset CelebA PartImageNet-S
Mini-group size 4 8 16 32 16 32 64 128

NMI (%) ↑ 59.50 59.64 53.89 25.52 43.94 47.28 55.10 53.63
ARI (%) ↑ 41.78 41.72 35.06 10.34 59.71 66.75 73.52 72.63

Table 7. Performance comparison of MPAE with different mini-group size on CelebA (K = 8) and PartImageNet Segmentation (K = 50).

We report the performance of MPAE with different mini-group sizes on a single-category dataset (CelebA) and a multi-
category dataset (PartImageNet Segmentation) in Table 7 in Appendix B.7. With a very large mini-group size, MPAE tends
to identify rarely appearing regions as independent parts. When the mini-group size is set to 32 on the CelebA dataset, the
model identifies sunglasses and hands as independent parts instead of decomposing the face region into the target number of
parts. Since we calculate the metrics using facial landmarks on the CelebA dataset, this results in a significant degradation
in NMI and ARI on CelebA. Therefore, we set the mini-group size to 8 for datasets containing only a single category. How-
ever, different categories in PartImageNet Segmentation consist of various parts. A mini-group size that is too small forces
MPAE to focus only on highly similar regions shared across different categories. Consequently, we observe a performance
degradation when the mini-group size is less than 32 on datasets with multiple categories. As a result, we set the mini-group
size to 64 for datasets with multiple categories.
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Appendix B.8 Average Number of Discovered Parts per Image with/without Ls

Model with Ls without Ls

Average number of
discovered parts per image 9.27 3.94

Table 8. Average number of discovered parts per image on PartImageNet Segmentation (K = 50) with/without Ls

We compute the average number of discovered foreground parts per image with/without the constraint of Ls to further
investigate its influence, as shown in Table 8 in Appendix B.8. Without Ls, the average number of discovered foreground
parts per image is only 3.94, indicating that each object is parsed into one or several coarse parts. This is because the
MPAE without Ls ssigns the K parts primarily based on instance-level similarity rather than exploring the shared parts. Ls

encourages each part descriptor to respond only to regions with high semantic similarity on the feature mapF . As a result,
the MPAE with Ls can better discover the shared parts across multiple categorie, and the average number of the discovered
foreground parts per image increases to 9.27.

Appendix C.1 Discovered Parts across Multiple Categories

Figure 2. Parts unsupervisedly discovered by MPAE across multiple categories on PartImageNet Segmentation (K = 50). The same color
indicates that these discovered parts share similar semantics, even if they belong to different categories.

Appendix C.2 Visualized Attention Maps in the Trainable ViT
In Fig. 3, we present some pixel-level masks of the discovered parts predicted by MPAE, along with their corresponding
attention maps from the trainable ViT used for descriptor extraction. The image restoration process performs implicit clus-
tering, encouraging the features from the same part region to be similar. As a result, the region of each part on S is filled
with the same part descriptor. By using these part descriptors to restore the masked patches, the ViT successfully learns to
extract features from the corresponding part regions as part descriptors through the attention mechanism, as shown in Fig. 3
in Appendix C.2. This explains why the learned results can be robustly generalized to test images.
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Figure 3. Pixel-level masks of discovered parts predicted by MPAE and their corresponding attention maps on PartImageNet Segmentation
dataset (K = 50).

Appendix C.3 More Visualized Part Discovery Results

K=8 K=25 K=50

PartImageNet OOD dataset

Figure 4. Examples of unsupervised part discovery results on PartImageNet OOD dataset predicted by MPAE in the setting of K =
8, 25, 50.
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Figure 5. Examples of unsupervised part discovery results on PartImageNet Segmentation dataset predicted by MPAE in the setting of
K = 8, 25, 50.
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Figure 6. Examples of unsupervised part discovery results on CUB dataset predicted by MPAE in the setting of K = 4, 8, 16.
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Figure 7. Examples of unsupervised part discovery results on CelebA dataset predicted by MPAE in the setting of K = 4, 8, 16.
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