DEPTHOR: Depth Enhancement from a Practical Light-Weight
dToF Sensor and RGB Image

Supplementary Material

This supplementary material provides additional details
to complement the main paper. It includes introduction of
dToF imaging (Sec. 1), detailed training settings (Sec. 2),
descriptions of the adopted evaluation metrics (Sec. 3), in-
troduction of dToF projection (Sec. 4), implementation de-
tails of the dToF simulation method (Sec. 5), additional ab-
lation studies about simulation method (Sec. 6), and addi-
tional experimental results (Sec. 7).

1. Preliminary: dToF Imaging

We first briefly introduce the imaging principle of dToF. As
shown in Fig. 1, a pulsed laser generates a short light pulse
and emits it into the scene. The pulse scatters, and some
photons are reflected back to the dToF detector. The depth
is then determined by the formula d = At - ¢/2, where
At is the time difference between laser emission and recep-
tion, and c is the speed of light. Each dToF pixel captures
all scene points reflected within its individual field-of-view
(iFoV) using time-correlated single-photon counting (TC-
SPC). The iFoV is determined by the sensor’s total field-of-
view (FoV) and spatial resolution, returning the peak signal
detected within that range. Interested readers are referred to
[1, 5, 11] for more details.
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Figure 1. Imaging principle of direct Time-of-Flight sensor

2. Training Setting.

We implement our method in pytorch[6] and train it on 4
Nvidia RTX 3090 GPUs. We adopt AdamW/[4] with 0.1
weight decay as the optimizer, and clip gradient whose 12-
norm is larger than 0.1. Our model is trained from scratch
in roughly 230K iterations using the OneCycle[8] learning
rate policy, setting the initial learning rate to 1/25 of the
maximum learning rate and gradually reducing the learn-
ing rate to 1/100 of the maximum learning rate in the later
stages of training. We set batch size as 12 and the largest
learning rate as 0.0003.

3. Details on Evaluation Metrics

We present the precise definitions of the quantitative metrics
reported in the main paper, which include §;, Rel, RMSE,
log,, and edge-weighted mean absolute error (EWMAE).
These metrics are defined as follows:
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Here, z,, and y,, represent the predicted value and ground
truth at valid pixel locations, respectively. The set P con-
tains all pixels with valid ground truth, and |P| denotes the
total number of such pixels.

Following [3, 9, 10], we compute the weight coefficient
G, for a pixel p based on its intensity and directional gra-
dients. First, the directional gradient V 1 (p) is calculated
as:

Vpl(p)=Vyp -V,

where D € {N,S, E, W} represents the north, south,
east, and west neighbors of pixel p and V}, is the depth of
p. Using these gradients, we compute the reciprocals of
directional conduction functions GG D, which is expressed
as:
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Kk is a regularization constant. Finally, the weight co-
efficient G, is obtained as the average of these directional
coefficients:
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Each pixel’s weight G, can be calculated based on the
above formula. The weight approaches 0 when the pixel is
in a homogeneous region and approaches 1 when the gradi-
ent in all four directions reaches a maximum.



4. Project dToF to Sparse Depth Map

Each dToF measurement provides a 3D point in the dToF
sensor coordinate system:
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The transformation from the dToF coordinate system to
the RGB camera coordinate system is given by:
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where the transformation matrix is:
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The transformed 3D point is then projected onto the
RGB image using the intrinsic matrix K rgp to get the ho-
mogeneous image coordinates:
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The final pixel coordinates (u,v) are obtained via per-
spective division:
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Existing depth super-resolution methods typically com-
pute the iFoV region coordinates for each measurement
based on this central coordinate, resolution, and FoV. How-
ever, calibration errors can cause significant shifts in these
depth points. Therefore, we approach this problem from the
perspective of depth completion robustness.

5. Details of dToF Simulation Method

We trained our model on the Hypersim dataset. To reduce
the impact of invalid data, we scaled some of the depth val-
ues that exceeded the sensor’s detection limit. Similar to
the approach of Sun et al. [11] on [12], if 60% or more of
the depth values in an image exceed 6 meters, all depth val-
ues are halved. Additionally, we modified the parameters
of our simulation method for each test dataset to match the
characteristics of different dToF sensors.

ZJU-LS Dataset. The resolution of the dToF sensor and the
depth ground truth are 8 x 8 and 480 x 640, respectively.
According to the calibration results provided by the authors,
the FoV of the L5 sensor covers approximately 61% of the
GT. The mean boundary values of its projected region on the
GT are [-25, 405, 85, 535], corresponding to the upper (h,,),
lower (h;), left (w;), and right (w,-) boundaries, respectively.
Each dToF signal corresponds to an iFoV of approximately
52 x 56 pixels. Additionally, the maximum depth recorded
by the L5 sensor is 4.1 m, whereas the maximum depth in
the GT is 10 m.

Due to the low power of the L5 sensor, it typically ex-

hibits signal loss in specific regions rather than returning in-
correct depth values. Based on the dataset masks, the prob-
ability of signal loss is approximately 30%. As the authors
performed strict calibration and no noticeable calibration er-
rors were observed in the visualization results, we did not
consider region shift in our simulation method.
Our Real-world Samples. The resolution of the dToF sen-
sor and RGB camera are 40 x 30 and 912 x 684, respectively.
To allow for 1/32 downsampling, we padded the images to
928 x 714. We used the internal parameters of the mo-
bile phone to project the raw dToF signals; the FoV of the
dToF sensor covers approximately 81% of the image. The
mean boundary values of its projected region on the im-
age are [30, 900, 40, 660]. Each dToF signal corresponds
to an iFoV of approximately 21 x 21 pixels. Additionally,
the maximum depth recorded by the dToF sensor is 6 m,
whereas the theoretical detection limit is 8.1 m.

Due to the higher performance of the dToF sensor, it
can still receive photons that pass through non-Lambertian
surfaces and may return valid depth values even in low-
reflectivity regions. As a result, the collected samples ex-
hibit more complex anomalies. To address this, we set the
probability of depth loss to 80% for pixels with a V-channel
value below 40 in the HSV color space and assigned corre-
sponding anomalies based on semantic labels.

6. Ablation Studies of dToF Simulation

We demonstrated the effectiveness of certain components
of our simulation method through quantitative results on the
ZJU-L5 dataset in the main paper. Since the calibartion er-
rors are not considered on the ZJU-LS5, in this section, we
provide additional visualizations on our collected data as a
supplement. The results presented were obtained by train-
ing the lightweight PENet [2] on the Hypersim [7] dataset
and evaluating its performance on real-world data.

During these experiments, we simulated signal loss in
distant regions and applied supervision, which occasionally
caused the model to predict areas with missing depth input
as distant regions incorrectly, since PENet lack of global
relationships provided by the MDE model.

Figure 2 illustrates the improvements in boundary pre-
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Figure 2. Effect of simulating calibration errors. Prediction
results are generated by the lightweight PENet[2].

dictions achieved by incorporating region shifts. These in-
clude resolving foreground-background overlaps caused by
calibration errors and correcting errors at object boundaries,
where dToF depth points represent the regional peak value.
Figure 3 illustrates the results of simulating non-
Lambertian surfaces. In cases of signal loss, the model uti-
lizes surrounding information to predict values instead of
directly assigning distant depths. Moreover, when photons
pass through objects and return erroneous values, the model
demonstrates the ability to partially correct these signals.
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Figure 3. Effect of simulating Non-Lambertian regions. Pre-
diction results are generated by the lightweight PENet[2].

7. Additional Experimental Results

Due to space limitations, we present additional experimen-
tal results here. Figure 5, Fig. 7 and Fig. 6 show the results

on our dToF samples, the ZJU-L5 dataset and the NYUv2
dataset, respectively.

Figure 4 presents failure cases from real dToF data,
primarily caused by excessive dToF anomalies, while our
model shows some improvement in handling these issues,
such as correcting the sculpture’s arm in Fig. 4e and Fig. 4c,
further refinement is needed. Additionally, the MDE model
exhibited semantic errors when processing rotated images,
failing to correct the anomaly in Fig. 4a. This issue can be
resolved by converting the images to a normal perspective.
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Figure 4. Failure example of real dToF data.
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Figure 6. Additional qualitative results on NYUv2 dataset. From top to bottom: RGB, GT, Our results



Figure 7. Additional qualitative results on ZJU-LS. From left to right, RGB-dToF, GT, Deltar, CFPNet, Our results.
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