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1. Proof and Derivation
1.1. Proof of Theorem 1

For a single sample z;, the student’s risk yields the follow-
ing:
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In other words, we arrive at the following definition:
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The empirical empirical risk RS of N samples and the ex-
pected risk R° on the whole data distribution D are defined
as:
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It is noted that the expected risk R® is constant given a stu-
dent, since the teacher is fixed and the randomness of the
training set is integrated out in expectation.

Since Zfil EPTNDiT.(a;S)e%(R57R;’S ®") s a non-
negative random variable related to the training set D;, we
can derive the following from Markov’s inequality:
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Taking the logarithm of both sides of the inner inequality
and converting the integral variable, we obtain the follow-
ing:
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Since log(%]EDtNDN Ziv=1 EpTwDir(as)e%(RS_Rs (pT)))
is determined by ¢, it can be represented as C'(0). Apply-
ing Jensen’s inequality to the concave function log(z), we
have:
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As a result, the PAC bound of EKD is derived:
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With § fixed, the student’s expected risk is bounded above
by its empirical risk and the divergence between its second-
order distribution and that of the teacher.

1.2. Derivation of objectives in EKD

In EKD, three optimization objectives are utilized: the
cross-entropy objective, the first-order distillation objective,



and the second-order distillation objective. This section
presents a detailed derivation of each of these objectives.

In evidential deep learning, the model’s predictions take
the form of a second-order Dirichlet distribution. Based
on this, the classic cross-entropy loss is integrated over
category probabilities, resulting in the following evidential
Cross-entropy:
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According to the form of the Dirichlet distribution, the
marginal probability distribution of p; is Beta(a;, cg— ;).
As a result, the following expression is derived:
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Combining the above two equations, we arrive the final ex-
pression:
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Before introducing the first-order distillation objec-
tive, we first provide the expression for the expectation
of the second-order Dirichlet distribution. Let p? =

(pT,pt,...,pL) denote the expectation of the teacher’s
T

Dirichlet distribution. Then p7 is calculated as: ﬁZT = .
g

For the student, a similar result holds: p

order distillation objective can be derlved by applymg the
Kullback-Leibler (KL) divergence to p” and p°:
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The second-order distillation objective also uses the KL
divergence, but it is applied directly to the Dirichlet distri-
butions of the teacher and student. The detailed derivation

is as follows:
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The optimization effect of first-order distillation on the
proportions of network outputs is straightforward, as it
directly acts on p°. However, some may question how
second-order distillation achieves alignment in terms of
class magnitudes. To address this, we provide a more de-
tailed explanation from the perspective of derivatives. The
partial derivative of o in the second-order distillation ob-
jective can be written as:
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From the above formulation, it can be inferred that the gra-
dients of the second-order loss with respect to the outputs
of different classes are non-conflicting. This ensures that as
the Dirichlet parameter o’ for any given class approaches
a;f, the second-order loss decreases monotonically. In con-
trast, for the first-order loss, which focuses on optimiz-
ing inter-class proportions, the adjustment of a7 toward
aF may cause significant shifts in the proportions of other
classes, potentially leading to an increase in the loss. Conse-
quently, the second-order loss is characterized as intra-class
magnitude alignment, while the first-order loss is described
as inter-class proportion alignment.



Table 1. Results on the CIFAR-100 validation set. The teacher and student networks share the same architecture but differ in either depth
or width. “Softmax” indicates that the model uses the vanilla KD probabilistic model, while “EDL” indicates that the model are trained by
evidential cross entropy loss. “*” denotes the results obtained by replacing the softmax-based teacher networks with evidential networks.

Experiment Group 1 2 3 4 5 6 7
Architecture ResNet32 x4 VGG13 WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110
Teacher Softmax 79.42 74.64 75.61 75.61 72.34 74.31 74.31
EDL 79.53 74.96 75.41 75.41 73.09 74.67 74.67
Architecture ResNet8 x4 VGG8 ‘WRN-40-1 ‘WRN-16-2 ResNet20 ResNet32 ResNet20
Student Softmax 72.50 70.36 71.98 73.26 69.06 71.14 69.06
EDL 72.77 70.67 71.84 73.36 69.22 70.9 69.22
KD [5] 73.33 72.98 73.54 74.92 70.66 73.08 70.67
KD* 73.82 73.55 73.26 74.80 70.96 73.15 70.81
DKD [16] 76.32 74.68 74.81 76.24 71.97 74.11 71.06
Logit DKD* 76.28 74.69 74.14 75.27 71.71 73.62 71.54
Logit_Stand [10] 76.62 74.36 74.37 76.11 71.43 74.17 71.48
Logit_Stand* 76.41 74.47 73.99 75.62 71.00 73.50 71.00
EKD(Ours) 77.21 74.71 74.43 76.15 71.48 73.68 71.51

2. Relationship between EKD and classical KD

It is observed that both EKD and classical KD methods
utilize first-order categorical probabilities for distillation.
Consequently, we try to explore the similarities and differ-
ences between the first-order probabilities in EKD and clas-
sical KD.

Beginning with the network output logits z =
{z1, 22, ..., zK }, classical KD apply a softmax function to
derive probabilities:
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where p; refers to the i-th dimension of categorical prob-
ability p. On the other hand, the first-order probability in
evidential theory are obtained by:
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where o (-) denote the evidential activation function.

Upon comparing the two equations above, their forms
are remarkably similar. In fact, Eq. 15 can be regarded as a
special case of Eq. 16 when f = exp and A = 0. Here, A
represents a prior Dirichlet distribution, denoted as Dir(\).
Therefore, the classical first-order probability is equivalent
to the expected probability in the absence of any prior dis-
tribution. In other words, the first -order alignment in EKD
further clarifies the source of the first-order probabilities,
which are the expectations of second-order distributions.
Moreover, we take into account the prior Dirichlet distri-
bution inherent in the training dataset.

3. Implementation Details

We adopt the experimental settings from previous work [2,
10, 16]. In the experiments on CIFAR-100, we utilize the

SGD optimizer with 240 epochs. When the student net-
work is ResNets [3], WRNs [14], or VGGs [9], the ini-
tial learning rate is set to 0.05. For MobileNets [0, 8] and
ShuffleNets [15], the initial learning rate is set to 0.01. The
learning rate decayed by a factor of 0.1 at epochs 150, 180,
and 210. As the batch size is 64, the momentum and weight
decay were set to 0.9 and 5e — 4, respectively. The cross-
entropy weight is fixed at 1, while the weights for first-order
and second-order distillation are set to 4.5 each. Addition-
ally, in the second-order distillation objective, we adopted
the linear warmup strategy from DKD to prevent numerical
overflow during the initial training phase.

In the experiments on ImageNet, the number of epochs
for SGD optimization is set to 100, and the batch size is in-
creased to 512. The initial learning rate is set to 0.2 and de-
cays by a factor of 0.1 every 30 epochs. The momentum and
weight decay are configured to 0.9 and 1e — 4, respectively.
The cross-entropy weight is set to 1, while the weights for
the first-order and second-order distillation objectives are
set to 2 and 0.01, respectively.

As mentioned in Section 3.1 of the main text, the net-
work outputs’ logits are transformed through an eviden-
tial activation function, for which we adopt the exponential
function, and then added to a prior weight \. Typically, A
is a manually specified hyperparameter [ 1], but we define it
as a trainable parameter that depends solely on the training
dataset. Additionally, we distill the prior weights by directly
transferring the X values from the trained teacher network to
the student network.

4. Further Remarks

The Effect of Evidential Networks. Since EKD employs
second-order predictions supported by evidential theory, we
adopt evidential student and teacher networks which out-
perform softmax-based networks by an average of 0.2% .
This raises potential fairness concerns, primarily regard-



Table 2. Top-1 accuracy of various ViT student models on CI-
FAR100. Teacher model is ResNet56.

Architecture  DeiT-Ti [11] PiT-Ti[4] PVT-Ti[12] PVTv2 [13]
Softmax 65.08 73.58 69.22 77.44
EDL 64.77 73.48 69.02 76.68
KD [5] 73.25 75.47 73.60 78.81
AutoKD [7] 78.58 78.51 77.48 79.37
Logit_Stand [10] 78.55 78.76 78.43 78.43
EKD(Ours) 78.64 79.33 78.74 79.80

ing the fixed teacher network, as all methods require the
student network to be trained from scratch during distil-
lation. To ensure fairness, We replace the softmax-based
teacher networks with evidential networks in several rep-
resentative methods, including KD [5], DKD [16] and
Logit_Stand [10].

As shown in Table 1, evidential networks have varying
effects, both positive and negative, on the three distillation
methods across different network architectures. On aver-
age, vanilla KD [5] achieves a performance improvement
of 0.17% on evidential networks, whereas DKD [16] and
Logit_Stand [10] experience decreases of 0.13% and 0.37%,
respectively. These results indicate that teacher networks
trained with evidential theory are both essential and unique
to EKD, as other methods are not inherently compatible
with evidential networks. Thus, the comparisons presented
in this study are fair, as the most suitable teacher network
was chosen for each method.

Another fairness consideration is that evidential student
networks generally outperform softmax-based networks by
a slight margin, with an average improvement of 0.2%.
More importantly, under these conditions, students trained
with EKD achieve absolute performance gains of 1.80%
over KD [5], 0.52% over DKD [16], and 0.23% over
Logit_Stand [10]. These results demonstrate that EKD de-
livers substantial improvements over KD and marginally
outperforms state-of-the-art methods.

Distilling ViTs. Logit-based distillation methods operate
solely from the perspective of network predictions, making
them inherently model-agnostic. As a result, these methods
can be directly applied to ViT models. The summarized re-
sults for ViT are presented in Table 2. EKD achieves state-
of-the-art performance on half of the networks and demon-
strates comparable performance to other methods on the re-
maining networks. These results underscore the potential
of EKD for deployment in more advanced network archi-
tectures.
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