ForestFormer3D: A Unified Framework for End-to-End Segmentation of Forest
LiDAR 3D Point Clouds

Supplementary Material

1. Overview

In this supplementary material, we provide:

* implementation details (Sec. 2),

 additional dataset details and point cloud annotation
(Sec. 3),

* a quantitative comparison including both individual tree
segmentation and semantic segmentation across nine re-
gions in the FOR-instanceV2 test split (Sec. 4),

¢ additional ablation studies (Sec. 5),

e qualitative results (Sec. 6), and

* relation to forest domain specific metrics (Sec. 7).

2. Implementation details

3D sparse U-Net architecture. The 3D sparse U-Net used
for sparse tensor feature extraction is shown in Fig. 1.

Loss calculation. All instance masks, predicted by trans-
former decoder, are supervised by losses including binary
cross-entropy (BCE), Dice, and score loss.
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where N is the number of voxels, ¢; is the predicted
mask logits at voxel 4, y; € {0,1} is the GT mask value,
and o (+) represents the sigmoid function. The additive con-
stant +1 in Eq. (2) prevents division by zero.

The score loss supervises the predicted confidence scores
of all predicted instance masks using mean squared error:
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where M is the number of predicted masks, 5; is the
predicted score for predicted mask j, and s; is set as the
IoU between the predicted mask and its best matched GT
mask, or zero if no GT overlaps. IoU is computed based on
the number of intersecting voxels divided by the union of
the predicted and GT mask voxels.

To facilitate query point selection, we first construct a 5D
embedding space where voxels from the same instance are
close while those from different instances are apart. This
embedding is learned using discriminative loss:
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Lyar €ncourages intra-instance compactness by pulling
voxel embeddings within the same instance toward their
mean. Lgis enforces inter-instance separation, and L., con-
strains instance centroids to stay near the origin. Let C' de-
note the total number of tree instances, and Z. the set of
voxels belonging to instance c. Each voxel ¢ has an em-
bedding f;, and the mean embedding of instance c is .
We define V. as the number of voxels in instance c¢. The
margins d,, and J4 control the desired intra-instance com-
pactness and inter-instance separation, respectively. Three
loss terms are calculated by:
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We set 6, = 0.5 and 4 = 1.5 following prior work [4,
9, 11].

In addition, to ensure that query points are sampled from
tree voxels, we train a tree and non-tree classification head
to distinguish tree and non-tree voxels using the BCE loss:
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where [; is the GT label for voxel 7, and ii is the predicted
class probability.
Other implementation details. Point clouds are voxelized
to a resolution of 0.2m. Data augmentation includes ran-
dom horizontal flipping, random rotation around the Z-axis,
and random scaling by a factor between 0.8 and 1.2. We
train our model on a single NVIDIA A100 GPU with 80
GB memory, using a batch size of 2 for 3000 epochs.

To stabilize training, we first pretrain two MLP heads
introduced in ISA-guided query point selection for 1000
epochs before jointly training the full model. Specifically,



the 5D embedding feature head is trained with the discrim-
inative loss (see Eq. (4)) to enforce compact intra-instance
representations and inter-instance separation, while the bi-
nary classification head is trained with a binary cross-
entropy loss to distinguish tree voxels from non-tree voxels
(see Eq. (8)). During this warm-up stage, the decoder re-
mains frozen, ensuring that the MLP heads produce stable
embeddings and classifications before integrating with the
full network. After this stage, we jointly train all compo-
nents, including the 3D sparse U-Net and the transformer
decoder, optimizing all loss terms together.

For inference, we sample 300 query points within each
cylindrical region of radius 16 m with a stride of 4 m using a
sliding window approach. The best score threshold on mask
removal is 0.4 according to our ablation studies (Fig. 3(d)).

3. Dataset details and point cloud annotation

Tab. 1 summarizes the key characteristics of the FOR-
instanceV2 dataset and the additional test datasets.

For the BlueCat data annotation, all trees were manually
labeled using 3D Forest software [8] by two independent
annotators working on separate, non-overlapping datasets.
After labeling, the trees were matched to field measure-
ments based on spatial proximity. This pairing was val-
idated by comparing tree heights derived from the point
cloud with those estimated from DBH-based allometry. In
addition, every tree with a DBH of 1 cm or greater was field-
verified to eliminate false positives, and any obvious label-
ing errors were manually refined.

For the NIBIO2 data, annotations were performed using
CloudCompare software (https://www.cloudcompare.org,
V 2.12.4) by two annotators, and the results were later re-
viewed to ensure consistency and accuracy.

4. Comparison to baselines across nine regions
in the FOR-instanceV?2 test split

We evaluate ForestFormer3D’s quantitative performance
across nine different forest regions in the FOR-instanceV?2
test set and compare it against other methods (see Tab. 2).
It is important to note that CHM-based YOLOVS [7],
ForAlINet [12], and SegmentAnyTree [10] are trained on the
original FOR-instance dataset [6], which does not include
data from the NIBIO_MLS, BlueCat, and Yuchen regions.
As shown in Tab. 2, ForestFormer3D consistently achieves
the best results for individual tree segmentation across all
nine regions except for SCION. In simpler forest areas,
such as CULS, NIBIO, SCION, and NIBIO_MLS, Forest-
Former3D maintains high F1 and Cov scores. In more chal-
lenging environments, such as TUWIEN (where trees are
closely intertwined), RMIT and Yuchen (with sparse point
densities), and NIBIO2 and BlueCat (characterized by both
large canopy trees and closely packed understory trees),

ForestFormer3D surpasses all prior baselines. It demon-
strates substantial improvements in regions that were pre-
viously difficult for existing methods. For example, in the
RMIT region, ForestFormer3D improves the F1 by 6.8 pp
over the second best one. In the SCION region, the Cov
metric shows an increase of 5.1 pp. The NIBIO2 region is
particularly challenging due to the presence of both under-
story and canopy trees, as noted in prior work [12]. Despite
this, ForestFormer3D outperforms the OneFormer3D base-
line by 8.2 pp in F1 and achieves a 17.6 pp improvement
over the reported F1 of 72.8% from ForAINet [12].

For semantic segmentation, ForestFormer3D demon-
strates competitive or superior performance in most regions,
with slight decreases in mloU observed only in the CULS
and NIBIO_MLS regions compared to the best-performing
method.

5. Additional ablation studies

Input radius size and number of query points. Fig. 2
compares the effect of different cylinder input radii and
the number of query points on individual tree segmenta-
tion metrics (F1 and Cov) within the FOR-instanceV2 test
split. Fig. 2(a) shows the performance of OneFormer3D,
while Fig. 2(b) shows the performance of ForestFormer3D.
r8_qp200 represents a cylinder radius of 8 m with 200
query points, with similar interpretations for other set-
tings. For ForestFormer3D, increasing the input radius and
the number of query points generally results in higher F1
scores. However, due to GPU memory limitations, further
increases in these parameters were not explored. For One-
Former3D, achieving an optimal balance between the input
radius and the number of query points is crucial to better
performance.

Score threshold on mask removal. We evaluate the ef-
fect of the score threshold on Prec, Rec, F1, and Cov using
the FOR-instanceV2 dataset (see Fig. 3). During inference,
masks with scores below the threshold are removed as unre-
liable, affecting the balance between retaining true positives
and removing false positives. As shown in Fig. 3, higher
thresholds improve Prec (Fig. 3(b)) by reducing false pos-
itives but decrease Cov (Fig. 3(a)) and Rec (Fig. 3(c)) by
discarding true positives. Fig. 3(d) highlights the trade-off
between Prec and Rec. A threshold of 0.4 achieves the best
F1 score in both validation and test sets, making it the opti-
mal choice for our framework.

Point cloud density. We evaluated the impact of dif-
ferent point cloud densities on segmentation performance.
The original FOR-instanceV2 dataset was downsampled to
seven densities: 10, 25, 50, 75, 100, 500, and 1000 points
per square meter (pts/m2). The results are shown in Fig. 4.
As the point density decreases, all metrics experience vary-
ing degrees of degradation. In particular, mloU and Prec re-
main relatively stable in different densities, while Rec, Cov,
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Figure 1. The detailed structure of the 3D sparse U-Net architecture used for feature extraction from the voxelized 3D point cloud.

Table 1. Characteristics of the FOR-instanceV2 dataset and additional test datasets in different geographic regions. The FOR-instanceV2
dataset contains unique individual tree IDs for each point, as well as semantic labels for ground, wood, and leaf. The additional test data,
on the other hand, includes only tree and non-tree labels, along with individual tree IDs for each point.

Region name Forest type (Tree species) Scanning mode (Sensor) M ONfutrn'; l::r Country
Train Val = Test
CULS [6] Coniferous dominated temperate forest (Pinus sylvestris) ULS (Riegl VUX-1) 1 1 1 37 Czech Republic
NIBIO [6] Coniferous dominated boreal forest (Picea abies, Pinus ULS (Riegl MiniVUX-1) 8 6 6 575 Norway
sylvestris, Betula sp. (few))
S RMIT [6] Native dry sclerophyll eucalypt forest (Eucalyptus sp.) ULS (Riegl MiniVUX-1) 1 0 1 223 Australia
§ SCION [6] Non-native pure coniferous temperate forest (Pinus radiata) ULS (Riegl MiniVUX-1) 2 1 2 135 New Zealand
§ TUWIEN [6] Deciduous dominated temperate forest (Deciduous species) ULS (Riegl VUX-1) 1 0 1 150 Austria
5 NIBIO2 Coniferous dominated boreal forest (Pinus sylvestris, Picea ~ ULS (Riegl VUX-1) 29 6 15 3062 Norway
% abies, Betula sp.)
I NIBIO_MLS Coniferous dominated boreal forest (Picea abies, Pinus MLS (GeoSLAM ZEB- 4 1 1 258 Norway
[10] sylvestris, Betula sp.) HORIZON)
BlueCat Deciduous temperate forest (Mixed species) TLS (Leica P20) 1 1 1 6304 Czech Republic
Yuchen [2] Tropical forest ULS (Riegl MiniVUX-1) 1 1 1 281 French Guiana
”g Wytham Deciduous temperate forest (Fraxinus excelsior, Acer pseu-  TLS (RIEGL VZ-400) 0 0 1 835 United Kingdom
.2 woods [3] doplatanus, Corylus avellana)
E LAUTx [1] Mixed temperate broad leaved, coniferous forest (Mixed MLS (GeoSLAM ZEB- 0 0 6 516 Austria
< species) HORIZON)
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Figure 2. Impact of cylinder input radius and number of

query points on individual tree segmentation metrics for FOR-
instanceV2 test split.

and F1 show more noticeable drops when the density falls
below 500 pts/m2. This suggests that the method may face

As shown in Fig. 5, this strategy improves individual tree
segmentation under sparse conditions (e.g., < 100 pts/m?),
yielding higher F1 scores. However, it brings no benefit
for dense inputs and can even degrade performance. These
results suggest that simple multi-density training is insuffi-
cient to address the challenges posed by point density vari-
ation, which remains an open problem.



Table 2. Comparison with other baselines on the individual tree segmentation and semantic segmentation for different forest regions in
FOR-instance V2 test split. The best results are in bold, and the second best ones are underlined.

Individual Tree Seg. (%)

Semantic Seg. (%)

Region Method
Prec Rec Fl1 Cov Ground Wood Leaf mloU
CHM-based YOLOVS [7] 100.0 100.0 100.0 - - - - -
ForAINet [12] 87.0 100.0 93.0 98.2 - - - -

CULS SegmentAnyTree [10] 100.0 100.0 100.0 - - - - -
ForAINetV2_R16 100.0 100.0 100.0 96.6 99.8 67.2 96.4 87.8
OneFormer3D [5] 95.0 95.0 95.0 94.6 99.8 69.0 96.5 88.5
ForestFormer3D (ours) 100.0 100.0 100.0 99.4 99.8 66.1 96.2 87.4
CHM-based YOLOVS [7] 87.0 72.0 790 - - - - -
ForAINet [12] 96.4 88.4 92.4 79.4 - - - -

NIBIO SegmentAnyTree [10] 91.0 88.0 89.5 - - - - -
ForAINetV2_R16 98.1 89.4 93.4 824 97.9 62.1 933 84.4
OneFormer3D [5] 79.2 96.2 86.6 88.9 97.8 60.7 93.0 83.9
ForestFormer3D (ours) 97.7 95.8 96.7 88.8 98.1 64.2 93.5 85.2
CHM-based YOLOVS [7] 70.0 62.0 65.0 - - - - -
ForAINet [12] 75.9 64.1 69.5 60.6 - - - -

RMIT SegmentAnyTree [10] 83.0 69.0 754 - - - - -
ForAINetV2_R16 74.5 59.4 66.1 60.3 98.3 55.8 92.7 82.3
OneFormer3D [5] 70.3 81.2 754 737 98.1 52.7 92.8 81.2
ForestFormer3D (ours) 81.5 82.8 82.2 73.5 98.2 58.1 92.7 83.0
CHM-based YOLOVS [7] 91.0 91.0 91.0 - - - - -
ForAINet [12] 96.0 87.7 91.5 83.1 - - - -

SCION SegmentAnyTree [10] 93.0 92.0 92.5 - - - - -
ForAINetV2_R16 100.0 90.4 95.0 83.2 99.7 619 95.1 85.6
OneFormer3D [5] 58.7 924 71.7 83.6 99.7 61.7 95.0 85.5
ForestFormer3D (ours) 97.1 924 94.7 88.7 99.7 64.4 95.5 86.5
CHM-based YOLOVS [7] 41.0 23.0 30.0 - - - - -
ForAINet [12] 66.6 71.4 694 583 - - - -
SegmentAnyTree [10] 55.0 46.0 50.1 - - - - -

TUWIEN g AINetV2R16 682 429 526 479 982 533 945 820
OneFormer3D [5] 41.5 62.9 50.0 548 98.4 48.4 942 80.3
ForestFormer3D (ours) 92.0 65.7 76.7 54.8 98.5 52.8 942 81.8
ForAINet [12] 835 64.5 72.8 - - - -

NIBIO2 ForAINetV2_R16 91.8 72.9 80.6 70.0 96.5 529 95.7 81.7
OneFormer3D [5] 79.2 859 82.2  79.1 96.9 54.4 95.8 82.3
ForestFormer3D (ours) 94.6 86.9 90.4 80.2 96.9 56.6 95.9 83.1
ForAINetV2_R16 955 913 93.3 84.4 98.8 74.9 86.4 86.7

NIBIO-MLS OneFormer3D [5] 79.3 100.0 88.5 89.8 98.9 753 87.2 87.1
ForestFormer3D (ours) 100.0 91.3 95.5 854 94.5 77.6 87.1 86.4
ForAINetV2_R16 71.8 27.9 40.2 32.8 - 73.3 94.7 84.0

BlueCat OneFormer3D [5] 59.7 47.1 52.6 48.3 - 64.4 93.0 78.7
ForestFormer3D (ours) 84.5 48.6 61.7 48.8 - 69.9 939 81.9
ForAINetV2_R16 783 75.0 76.6 749 99.4 51.7 98.1 83.0

Yuchen OneFormer3D [5] 52.9 75.0 62.1 71.6 99.6 50.0 979 82.5
ForestFormer3D (ours) 90.5 79.2 84.4 79.2 99.7 49.7 98.1 82.5

6. Qualitative results

To provide an intuitive understanding of how segmentation
metrics relate to actual segmentation quality, we present vi-
sualizations of ForestFormer3D’s results in individual tree
segmentation and semantic segmentation tasks.

Fig. 6 shows both individual tree segmentation and se-
mantic segmentation predictions, along with corresponding
ground truth segmentations, across nine different forest re-
gions in the FOR-instanceV2 test split. The results show
that our ForestFormer3D performs well under various con-
ditions, including data collected from different sensors, dif-
ferent point densities, varying forest types and geographical
locations (i.e., boreal, temperate and tropical forests), and
complex environments where both large and small trees co-

exist. These visual results demonstrate the robustness of
ForestFormer3D in handling diverse and challenging forest
scenarios.

Fig. 7 displays individual tree segmentation results
with predicted and ground truth segmentations for Forest-
Former3D on the Wytham woods and LAUTx datasets.
Fig. 8 presents three representative examples, progressing
from simple forest scenes to densely packed environments
with both large canopy trees and understory ones. For each
example, we include visualizations of the ISA-guided query
points, the predicted masks generated from these points,
and the final individual tree segmentation predictions, along
with the ground truth for comparison.

Fig. 9 presents a visual comparison of ForestFormer3D
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Figure 3. Effect of score threshold on key metrics of individual
tree segmentation (Prec, Rec, F1 and Cov) for FOR-instanceV2
dataset.
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Figure 4. Effect of point density on metrics of individual tree
segmentation (Prec, Rec, F1 and Cov) and semantic segmentation
(mloU) for FOR-instanceV?2 test split.

and baseline methods. In Example 1 and Example 2,
ForestFormer3D demonstrates its ability to effectively miti-
gate over-segmentation and under-segmentation compared
to other methods. However, in Example 2, small trees
are occasionally missed, indicating a potential limitation
in detecting such cases. In Example 3, heavily inclined
small trees near the ground pose significant challenges
for all methods, leading to either missed detections, over-
segmentation, or incorrect assignment to neighboring larger
trees. Addressing these complex scenarios remains an open
problem for future research.
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Figure 5. Effect of multi density augmentation on individual
tree segmentation (F1) and semantic segmentation (mloU) on the
FOR-instanceV2 test split.

7. Relation to forest domain specific metrics

While domain-specific metrics have long been used in
forestry research, we adopt Prec, Rec, and F1 to align
with standard evaluation practices in computer vision.
This allows for direct comparability across domains while
maintaining consistency with traditional forestry metrics.
Specifically, completeness corresponds to Rec, omission er-
ror to 1 —Rec, commission error to 1 — Prec, and F-score re-
mains equivalent to F1. These relationships have been pre-
viously established in forestry research [12], ensuring that
our reported results remain interpretable for both forestry
and computer vision communities.

It is worth noting that SegmentAnyTree [10] reports lo-
cally computed F1 scores, whereas we adopt global metrics
consistent with ForAINet [12]. This difference in evalua-
tion metrics explains the discrepancy in reported F1 scores
across methods.
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Figure 8. Visual comparison of individual tree segmentation for three representative forest scenes, with each row illustrating a different
stage in our segmentation framework. In the first row, the selected ISA-guided query points are highlighted as enlarged, randomly colored
points, effectively covering nearly every tree in the scene. The second row shows the predicted masks generated based on the query
points from the first row, with each mask color corresponding to its associated query point color. The third row increases color contrast
to distinguish each predicted individual tree, with colors again randomly assigned. The fourth row presents the ground truth segmentation
with randomly assigned colors to aid comparison.
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Figure 9. Visual comparison of individual tree segmentation results among ForestFormer3D and baseline methods, with randomly assigned
colors representing different tree instances. Common segmentation errors are highlighted using four distinct markers: red circles for under-
segmentation, yellow circles for over-segmentation, bright blue circles for undetected trees, and black circles for other errors, such as points
from one tree being assigned to a neighboring tree.
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