
Repurposing 2D Diffusion Models with Gaussian Atlas for 3D Generation

Supplementary Material

A. Supplementary for GaussianVerse

A.1. Fitting Details

As described in Section 3, we adopted Scaffold-GS [24]
as the base model for per-object 3D Gaussian fitting. We
observed duplicated Gaussians when the number of offsets
was large, even at the default value. Therefore, we reduced
the number to 4 to allow more anchors to be initialized with
random values. The 3D Gaussians were then optimized ac-
cording to the objective in Equation 2, with ω→

rgb set to 0.8,
ω→
ssim set to 0.2, ω→

lpips set to 0.02, and ω→
reg set to 0.01.

A.2. 3DGS Quality of GaussianVerse

We compare our proposed 3DGS fitting method in Sec-
tion 3 with the densification-constrained fitting method
introduced by GaussianCube [57] and the upper-bound
method, Scaffold-GS [24], in Figure 11. Compared to
GaussianCube, our method achieves better rendering qual-
ity. Compared to the upper bound, our results show no sig-
nificant visual degradation while using significantly fewer
3D Gaussians. As shown in Figure 11, the rendering quality
of fitted 3DGS does not improve with an increased number
of Gaussians. This observation confirms that many Gaus-
sians contribute minimally to the final rendering quality and
can be merged or pruned during fitting.

A.3. Comparison with Other 3D Gaussian Datasets

GaussianVerse is a large-scale dataset consisting of high-
quality 3D Gaussian fittings for a wide range of objects. We
note that there are a few other studies that also fit per-object
3D Gaussians to assist in the training of diffusion models.
A direct comparison is provided in Table 3.

B. Supplementary for Gaussian Atlas Formu-

lation

B.1. Formulation Details

As discussed in Section 4, the adaptive nature of 3DGS
fittings in GaussianVerse enables faster transformation of
3DGS to 2D Gaussian Atlas compared to the similar pro-
cess in [57]. Notably, the computation time is significantly
reduced during the non-square Optimal Transport step for
sphere offsetting, since the number of 3D positions {x} is
typically much smaller than N , the number of surface points
{s} on the standard sphere S. After sphere offsetting, for
3DGS fittings that have a smaller size than N , we pad addi-
tional Gaussians by duplicating the ones with the smallest
scales and set their opacity to 0. For 3DGS fittings that have
more Gaussians than N , we prune the Gaussians with the
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Figure 11. Comparisons of 3DGS fitting methods. Our method
achieves high fitting quality comparable to the upper bound with
significantly fewer valid 3D Gaussians with positive opacity.

smallest scales before sphere offsetting. In practice, con-
structing one Gaussian atlas takes an average of approxi-
mately one minute.

C. Supplementary for Finetuning LD with

Gaussian Atlas

C.1. Training Diffusion Model Without VAEs

The typical fine-tuning approach involves VAE encoding
and decoding [14]. However, we argue that such a VAE
auto-encoding is inappropriate for Gaussian atlases due to
three reasons: (i) VAE encoding is a lossy compression of
the atlases, whose accuracy is crucial for Gaussian render-
ing. We demonstrate the impact of using VAE for auto-
encoding Gaussian atlases in Figure 12; (ii) Even at the
maximum bound ε = 36, 864 = 192 → 192, the num-
ber of Gaussians is significantly smaller than the number
of pixels required for VAE input (e.g., 768 → 768). Naive
up-sampling of the Gaussian Atlas X would significantly
increase computational costs; (iii) Even with scaling and
shifting, X does not visually resemble the natural RGB im-
ages originally used for VAE training, but rather analogizes
latent features. Considering these, we remove the original
VAE and fine-tune the LD UNet directly on Gaussian at-
lases. We make appropriate modifications to the input and
output layers of the UNet to accommodate all Gaussian at-
tributes with the correct number of channels [14].

C.2. More Details

Diffusion model training. We set ωdiff to 1.0, ωrgb to
10.0, ωmask to 1.0, and ωlpips to 1.0 to finetune the LD



Methods Venue # of 3DGS fittings # of Gaussians per fitting
GSD [30] ECCV 2024 6,000 1,024

GVGen [10] ECCV 2024 ↑46,000 32,768
GaussianCube [57] NeurIPS 2024 125,653 32,768

ShapeSplat [27] 3DV 2025 ↑65,000 >20,000
GaussianVerse (ours) - 205,737 10,435

Table 3. GaussianVerse contains large-scale 3DGS fittings with adaptive number of Gaussians, which allows various applications.
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Figure 12. Latent diffusion VAE degrades 3D Gaussian quality.

In the bottom row, we present a transformed Gaussian atlas and its
reconstruction with and without VAE auto-encoding. When the at-
las is up-sampled to a higher resolution, no obvious differences are
observed in the atlas. However, after rendering the decoded Gaus-
sians to images, we can observe much higher disparities, resulting
in significantly reduced PSNR and visual quality. This suggests
that incorporating the VAE for 3DGS diffusion is impractical.

UNet. At each training step, we randomly sample one view
of 2D renderings to compute the photometric losses. We
enable gradient checkpoint to save GPU memory, which al-
lows a local batch size of 8 for each GPU, with a total batch
size of 64 across 8 GPUs.

D. More Results

D.1. More Comparisons

Since Omages [55] does not support text-to-3D generation
and the implementations of PI3D [21], HexaGen3D [28],
and GIMDiffusion [5] are not publicly available, we pro-
vide additional qualitative comparisons against Splatter Im-
age [45], a method that also generates 2D representations
of 3D objects. As shown in Figure 13, while Splatter Im-
age reconstructs the complete geometry of 3D objects with
few artifacts, it struggles to generate coherent appearances
with meaningful details. In contrast, our method leverages
the prior knowledge embedded in a pre-trained 2D diffusion
model, thereby yielding significantly improved generation
quality.

OursSplatter imagePrompts

“An UFO 
aircraft”

“A bed 
covered with 
a blanket”

Figure 13. Comparison with a 2D generation approach [45].

Note that we provide MVDream [41] generated 2D images (shown
as the main images) to initialize 3D generations of [45] (shown as
the smaller images).

D.2. More Generations

More results generated from a diverse list of prompts are
shown in Figure 16 and Figure 17. We demonstrate impres-
sive generation quality on text prompts involving descrip-
tions for color, shape, style, abstract semantics, and quan-
tities for objects. Additionally, we include videos of 360-
degree renderings of the generated objects along with the
supplementary material.

2D flattening and surface cutting may introduce unex-
pected artifacts in the final 3D generations [5]. However,
when rendering the generated 2D atlases back as 3D Gaus-
sians, no defects are observed at the ’seams’ of discon-
nected 2D boundaries, and our final 3D generations are co-
herent and natural, similar to other direct 3D generation ap-
proaches [10, 57]. This proves the concept of our approach
— 3D generation achieved by a 2D diffusion model.

D.3. Diversity of Generations

With the same text prompt, we initiate the reverse diffusion
with different random noise to demonstrate the diversity of
generations in Figure 14. We observe a high diversity of
geometries and appearances of the generated objects. This
further proves that our proposed 2D representations of 3D
Gaussians does not negatively alter the underlying seman-
tics of the original 3D properties.



3D Generations Gaussian atlasesPrompts

“A yellow 
chair”

“A 
delicious 
hamburger”

Figure 14. Diverse text-to-3D generation results from the same

prompt. We present the generated Gaussian atlases in the order
from top left to bottom right: 3D location x, albedo c, color-coded
opacity o, normalized scale s, and the last three channels of nor-
malized quaternion r.

E. Discussions

Limitations. Our experiments revealed a trade-off be-
tween generation quality and the parameter N , which de-
notes the number of Gaussians per Gaussian atlas. A larger
N allows for finer-grained details in the generated outputs,
but it also increases both training and inference costs. In
this paper, we set N = 128 → 128 = 16, 384 Gaussians as
a good compromise between computational efficiency and
quality. However, in our current setup — using approxi-
mately three times fewer Gaussians than in [57] — our 3D
generations do not exhibit significantly finer details com-
pared to state-of-the-art methods that employ substantially
more Gaussians.

Moreover, since this work repurposes a specific check-
point of the LD model, no major updates have been made

“a very beautiful 
small organic 
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tiny human heart 
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pipes.

3D Generations
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Prompts 2D Generations
(original LD)

Figure 15. Similar to the original LD, our repurposed LD is not
good at capturing long text prompts for 3D generations.

to the model architecture. Consequently, our model inherits
the limitations of the original LD model for 3D generation,
including reduced quality for long text prompts (see Fig-
ure 15).

Future Directions. The purpose of this work is to intro-
duce a novel way to represent 3D contents as 2D and make
attempts to unify both 2D and 3D generation, allowing ad-
vancements in either paradigm to benefit both. There are
two directions particularly worth pursuing by following the
pathway presented in this work. The first is to experiment
with more advanced diffusion models, such as transformer-
based architectures [32] or latent diffusion models for Gaus-
sians [36]. The second is to integrate plug-ins that are orig-
inaly designed for 2D diffusion models, such as IP-adapter
[56] and DreamBooth [38], into 3D generations, given the
unified diffusion framework.
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Figure 16. More text-to-3D generation results. Our model is able to generate 2D Gaussian atlases to resemble high-quality 3D Gaussians
from various prompts. We present the generated Gaussian atlases in the order from top left to bottom right: 3D location x, albedo c,
color-coded opacity o, normalized scale s, and the last three channels of normalized quaternion r.
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Figure 17. More text-to-3D generation results (cont.). Our model is able to generate 2D Gaussian atlases to resemble high-quality 3D
Gaussians from various prompts. We present the generated Gaussian atlases in the order from top left to bottom right: 3D location x,
albedo c, color-coded opacity o, normalized scale s, and the last three channels of normalized quaternion r.
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