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8. Implementation

We build our model on a standard 2D diffusion framework
[16], using a 2D U-Net [47] as the autoencoder backbone.
Since lidar range images exhibit a wrap-around structure
the same as panoramic images, we replace traditional con-
volutions with circular convolutions [50], following prior
lidar diffusion models [20, 45, 77]. Additionally, we em-
ploy a lightweight three-layer CNN (the semantic projec-
tor) to map the U-Net’s latent space to the same resolution
as the rescaled semantic map. For inference and lidar trans-
lation, we use DDIM [53], a commonly adopted technique
for efficient sampling. We adopt the standard linear vari-
ance schedule (ω1 = 1 → 10→4 to ωT = 0.02 over T steps)
for both lidar generation and translation in our experiments.

9. Range Image and Point Cloud Conversion

Lidar range image leverages spherical projection to convert
3D point clouds into 2D images. Although there are some
loss to this conversion, this technique has been shown effec-
tive to both the discriminative [33] and generative models
[5] for lidar data. Given each 3D point (x, y, z) in the lidar
coordinates, we have
• Range:

r =
√
x2 + y2 + z2 (8)

• Azimuth angle:

ε = atan2(y, x) (9)

• Elevation angle:

ϑ = arcsin

(
z

r

)
(10)

These angles are then rescaled and quantized to integer
image coordinates (u, v). For a 360↑ sweep horizontally
mapped into u ↑ [0, 1023] and a set of 64 vertical rings
mapped to v ↑ [0, 63], we can apply
1. Horizontal index

u =

⌊
1024

2ϖ
(ε + ϖ)

⌋
↑ [0, 1023] (11)

so that ε = ↓ϖ goes to u = 0 and ε = +ϖ goes near
u = 1023.

2. Vertical index

v =

⌊
64

ϑmax ↓ ϑmin
(ϑ↓ ϑmin)

⌋
↑ [0, 63] (12)

where ϑmin,ϑmax are the minimum/maximum eleva-
tion angles of the lidar (↓25↑ to +3↑ for both Se-
manticKITTI and SynLiDAR).

Finally, we can store the measured range r (and possibly
intensity and semantic labels) and in the resulting 2D range
image at pixel (u, v).

10. Evaluation Metrics

This section discusses the evaluation metrics used in the
main body of the paper for assessing the quality of the gen-
erated point clouds in terms of both fidelity and diversity.
The metrics for data generation can be categorized into two
classes: perceptual and statistical.

Perceptual metrics measure the distance between real
and generated data by comparing their representations in
a perceptual space, which is derived from visual data
using a pretrained feature extractor. In this research,
we employ three perceptual metrics—FRID, FSVD, and
FPVD—which serve as the lidar version of the commonly
used Fréchet inception distance (FID).
• FRID employs RangeNet++ [33], a range-based lidar

representation learning method, to extract features and
compute distances. It is used as the primary metric be-
cause it evaluates only the regions within the range im-
age, intentionally excluding areas outside where the data
is less controlled. This approach reduces the influence of
extraneous noise from regions far from the ego vehicle.

• FSVD employs MinkowskiNet [8] to extract features by
first voxelize the 3D point clouds. This method can cover
the entire lidar space. The final feature vector is com-
puted by averaging all non-empty voxel features from ev-
ery point cloud segment.

• FPVD empoloys SPVCNN [55], a point-voxel-based fea-
ture extractor which aggregates both point and volumetric
features. This method can cover more geometric feature
but in the other hand will be impacted more by the noisy
points. The final feature vector is computed in the same
way as FSVD.
Statistical metrics have been used as evaluation criteria

for point cloud generative models since the pioneering work
[2]. These metrics rely on distance functions to quantify the
similarity between pairs of point clouds. Among these, the
Chamfer Distance (CD) has been the prevalent choice in
recent studies [45, 66] due to its computational efficiency
compared to other measures:

CD(X, X̂) =
∑

x↓X

min
y↓X̂

↔x↓ y↔22 +
∑

y↓X̂

min
x↓X

↔x↓ y↔22

(13)
where X , X̂ are the input and the reconstructed point cloud
respectively, and x, y are individual points. The Chamfer



Distance is also used for evaluating the quality of the syn-
thetic point clouds generated by the models. Based on this
we have two metrics that focus on diversity and fidelity re-
spectively:
• Jensen-Shannon Divergence (JSD) measures the sim-

ilarity between two empirical distribution PA and PB

based on the KL-divergence.

JSD(PA||PB) =
1

2
DKL(PA||M) +

1

2
DKL(PB ||M)

(14)
where M = 1

2 (PA + PB) and DKL(·||·) is the KL-
divergence of distributions represented by two probability
density functions, PA and PB .

• Minimum Matching Distance (MMD) computes the av-
erage minimum distance between two matching point
clouds from sets Sg and Sr:

MMD(Sg, Sr) =
1

|Sr|
∑

Y ↓Sr

min
X↓Sg

CD(X,Y ) (15)

Statistical metrics were originally designed for object-level
point clouds, making them less suited to the more complex,
scene-level data we work with. To address this mismatch,
we follow the method in [45] by voxelizing the lidar point
clouds and computing the metrics based on these voxels.
Furthermore, metrics such as MMD are highly sensitive to
noise. Since lidar data often includes uncontrollable noisy
points, particularly in regions not captured by the range im-
age. As a result, we place less emphasis on these statistical
metrics compared to perceptual metrics.

11. Additional Results

In addition to the perceptual and statistical metrics, we fur-
ther evaluate semantic fidelity by applying the pretrained
RangeNet++ to compute both semantic accuracy and mean
IoU. We also calculate the mean absolute error (MAE) be-
tween the generated and ground-truth lidar range maps.

Method MAE → Accuracy ↑ mIoU ↑

LiDM 4.31 0.604 0.504
SG-LDM 1.28 0.808 0.696

Table 6. Evaluation of semantic fidelity on SemanticKITTI.


