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Supplementary Material

In this supplementary material, we provide additional ex-
perimental details and results that were omitted from the
main paper:

• Appendix A: Additional related works;
• Appendix B.1: Additional quantitative results;
• Appendix B.2: Additional qualitative analysis;
• Appendix B.3: Additional mis-segmentation analysis;
• Appendix B.4: Additional organ reconstruction analysis.

A. Additional Related Works

In this supplementary section, this paper systematically
organizes the related works and conducts a comprehen-
sive analysis of their strengths and limitations in multi-
organ segmentation tasks. The involved methodologies
include: CNN-based medical image segmentation ap-
proaches, Transformer-based medical image segmentation
approaches, and graph neural network-based vision meth-
ods.

A.1. CNN-based Segmentation Methods
As the most widely adopted deep learning architecture for
segmentation tasks, CNN-based methods play a pivotal role
in multi-organ segmentation. The pioneering CNN ap-
proach is the Fully Convolutional Network (FCN) [11],
which markedly improves the performance of deep learning
methods in medical image segmentation through superior
organ texture modeling capabilities and end-to-end training
paradigms. Subsequently, Ronneberger et al. introduce U-
Net [15], which establishes encoder-decoder connectivity
through skip connections and remains the benchmark for
most medical image segmentation tasks today. The suc-
cess of U-Net catalyzes the development of numerous U-
Net variants, including Attention U-Net [13] that suppresses
background noise via attention mechanisms, Inception U-
Net [18] for multi-scale feature fusion, U-Net++ [19] with
dense skip connections enhancing feature interactivity, and
V-Net [12] employing 3D convolution for direct volumet-
ric segmentation. In recent years, CNN-based segmenta-
tion approaches have increasingly focused on lightweight
architectures and irrelevant information suppression. Tiny
U-Net [3] proposed by Chen et al. effectively balance per-
formance and computational efficiency through cascaded
multi-scale receptive fields. Ruan et al. [16] achieve multi-
scale anatomical modeling via attention mechanisms inte-
grated with group aggregation modules, maintaining perfor-
mance while reducing model complexity. Notably, Zhu et

al. [20] enhance segmentation accuracy by optimizing bal-
anced supervision mechanisms between the encoder and de-
coder components to eliminate redundant representations.

A.2. Transformer-based Segmentation Methods
The remarkable performance of the Transformer in com-
puter vision has attracted extensive research interest [5]. By
enabling global attention through the self-attention mech-
anism, this paradigm effectively addresses the receptive
field limitations inherent in CNN-based segmentation ap-
proaches. Consequently, a series of Transformer-based seg-
mentation methods have emerged. Valanarasu et al. ex-
plore the feasibility of self-attention mechanisms in medi-
cal image segmentation, proposing MedT [17]. Inspired by
Swin Transformer [10], Cao et al. develop SwinUNet [2]
for multi-organ segmentation, achieving outstanding per-
formance. However, Transformer-based methods excel at
capturing global contextual relationships but require sub-
stantial training data, which restricts their applicability to
centralized and fine-grained medical image segmentation
tasks. To address these limitations, researchers have inte-
grated CNN and Transformer methodologies to preserve lo-
cal details while capturing global anatomical relationships.
Representative hybrid approaches include TransUNet [4],
UTNet [6], Daeformer [1], and EMCAD [14], which have
demonstrated superior performance in medical image seg-
mentation tasks.

A.3. Graph-based Vision Methods
Graphs demonstrate exceptional structural representation
capabilities, as they can not only model diverse geomet-
ric morphologies but also represent inter-structural relation-
ships through node connectivity. Compared to CNN and
Transformer paradigms that operate on regular grid struc-
tures, graph representations break free from fixed grid con-
straints, enabling flexible modeling of irregular anatomies.
Recently, graph-based vision architectures have garnered
significant attention. Han et al. propose ViG [7], which
transforms images into graph representations and employs
message passing between nodes for feature learning. Build-
ing upon ViG, Han et al. further introduce ViHG [8] by
incorporating hypergraph theory, where hyperedge repre-
sentations replace conventional adjacency matrices, signif-
icantly reducing graph construction complexity. Notably,
there exists an intrinsic connection between Graphs and
Transformers. Joshi demonstrates that Transformers essen-
tially constitute fully connected variants of graph neural



Table 1. The comprehensive performance comparison (in recall, sensitivity and 95HD (↓) ) of MoDGR with SOTA segmentation architectures
on CHAOS-T2, ACDC, BTCV, Cervix and CMR datasets. ♣ CNN-based, ♠ Transformer-based, ♦ Hybrid architectures, ♥ Graph-based.

Methods
CHAOS-T2 ACDC BTCV Synapse-C CMR

Sen. Pre. 95HD Sen. Pre. 95HD Sen. Pre. 95HD Sen. Pre. 95HD Sen. Pre. 95HD

♣ EGE (MICCAI 23’) .7673 .8271 78.5321 .9091 .9482 22.7375 .7030 .8136 74.2004 .5218 .6680 53.6636 .8845 .8952 25.4532
♣ SelfRegUNet (MICCAI 24’) .7420 .8287 68.7118 .9056 .9181 20.2689 .7034 .7304 83.3533 .4619 .5775 58.4830 .8966 .8774 22.7412
♣ TinyUNet (MICCAI 24’) .7482 .8059 54.9545 .8937 .9239 24.9172 .6875 .7713 89.6362 .5021 .6090 54.9693 .8535 .8823 25.7416

♠ MedT (MICCAI 21’) .5955 .7232 83.0137 .9056 .9424 22.5387 .6227 .6895 94.5674 .4719 .5986 58.9834 .7986 .8272 30.3032
♠ SwinUNet (ECCV 22’) .7018 .7617 83.9388 .8185 .8548 33.7631 .6543 .7438 97.1356 .4333 .6065 56.4255 .7709 .7790 38.5128

♦ UTNet (MICCAI 21’) .7592 .8498 61.4286 .9063 .9581 19.3013 .7339 .8445 84.9672 .5477 .6112 49.5132 .9116 .8967 21.6566
♦ Daeformer (MICCAI 23’) .7658 .8290 61.2261 .8929 .9352 27.6894 .6607 .7718 64.7749 .4335 .6353 57.1806 .8230 .8526 30.2255
♦ EMCAD (CVPR 24’) .7761 .8728 92.0817 .8965 .9541 28.8562 .6627 .7658 67.9781 .5299 .6766 51.9387 .8615 .8857 23.3042

♥ DGRNet(ours) .8471 .8792 39.2901 .9155 .9667 17.9127 .8551 .8795 34.5149 .6594 .7364 23.8489 .9157 .9191 14.9538

networks [9]. Given the inherent irregularity of anatom-
ical structures in multi-organ segmentation tasks and the
critical importance of inter-organ relationships for precise
anatomical modeling, this paper proposes DGRNet to lever-
age graph representations for capturing diverse anatomical
structures. This approach effectively overcomes the fixed-
grid limitations of CNN and Transformer-based methods,
thereby enhancing multi-organ segmentation performance.

B. Additional Experiment Results
This section provides additional comparative analyses to
validate the superior performance of DGRNet further. The
supplementary evaluation comprises quantitative analysis,
qualitative analysis, mis-segmentation analysis and organ-
reconstruction analysis, which holistically reinforce the ex-
perimental findings in the main text.

B.1. Additional Quantitative Analysis
In supplementary quantitative analysis, we further validate
the effectiveness of DGRNet through Sensitivity (Sen.),
Precision (Pre.), and 95% Hausdorff Distance (95HD). No-
tably, Sen. and Pre. reflect the discriminative capability for
organ classes, while 95HD quantifies boundary alignment
between predictions and GT. As shown in Table 1, CNN-
based methods generally outperform Transformer-based
counterparts, attributed to their local receptive fields bet-
ter suited for organ region characteristics. Hybrid networks
combining CNN and Transformer components achieve
improved segmentation performance through synergistic
global-local spatial dependency modeling of anatomical
structures. Nevertheless, DGRNet surpasses all compared
methods, with graph-based organ modeling demonstrating
exceptional adaptability to irregular morphology, evidenced
by its lowest 95HD values across all datasets. DGRNet can
explicitly enforce boundary constraints through category-
specific priors, which simultaneously improve organ class

discriminability. Consequently, DGRNet achieves optimal
Sen. and Pre. on all five datasets, outperforming state-of-
the-art methods.

B.2. Additional Qualitative Analysis
In supplementary qualitative analyses, we provide more
comprehensive visual comparisons to demonstrate the su-
perior segmentation capability of DGRNet. As illustrated
in Figure 1, magnified views of critical anatomical regions
are provided with corresponding GT annotations for refer-
ence. Our method exhibits remarkable adaptability to inter-
organ morphological variations while maintaining precise
delineation across organs of diverse scales. Notably, DGR-
Net achieves anatomically consistent segmentation even in
regions with ambiguous tissue boundaries (shown in Row 2
of the BTCV dataset), where information aggregation meth-
ods typically produce fragmented predictions. Extended vi-
sualization results further validate the robustness of DGR-
Net in handling complex multi-organ scenarios, particularly
outperforming existing approaches in preserving topologi-
cal correctness for small-scale anatomical structures. This
visual evidence aligns with our quantitative findings, con-
firming the effectiveness of the proposed dynamic graph re-
construction paradigm.

B.3. Additional Mis-segmentation Analysis
In the supplementary mis-segmentation analysis, we pro-
vide additional visual evidence demonstrating the supe-
rior capability of DGRNet to classify segmented regions
into target organ categories correctly. As shown in Fig-
ure 2, state-of-the-art methods exhibit mis-segmentation
conditions in anatomically interleaved regions, where cor-
rectly segmented areas are classified to incorrect organ
classes. Notably, Transformer-based methods show fewer
mis-segmentations than CNN-based approaches, attributed
to their global receptive fields better capturing inter-organ
spatial dependencies for class discrimination. Nevertheless,



DGRNet performs better than the comparative baseline, a
superiority enabled by its category-aware guidance mecha-
nism. This mechanism injects category-specific priors dur-
ing organ reconstruction, simultaneously encoding anatom-
ical features and their semantic identities to mitigate feature
ambiguity. Consequently, DGRNet maintains precise class-
aware representations even in high-complexity regions.

B.4. Additional Organ Reconstruction Analysis
In supplementary organ reconstruction analyses, we present
visual exemplars from five datasets to validate the organ
modeling capabilities of DGRNet. As demonstrated in
Figure 3, CNN-based methods exhibit finer-grained organ
morphology modeling compared to Transformer-based ap-
proaches. This advantage stems from two factors: (1) con-
volutional kernels, being significantly smaller than Trans-
former patch blocks, enable finer anatomical detail preser-
vation; (2) the overlapping nature of convolutional opera-
tions contrasts with Transformers’ disjoint patch process-
ing. However, both paradigms rely on information aggre-
gation approaches that fundamentally conflict with irregu-
lar organ geometries, inducing cross-organ interference that
manifests as blurred morphological and boundary represen-
tations. In contrast, DGRNet leverages the inherent flexi-
bility of graph topology to align with anatomical irregulari-
ties while incorporating category-specific priors to reinforce
boundary delineation. This dual mechanism enables pre-
cise, anatomy-aware modeling that robustly adapts to both
morphological variations and spatial dependencies across
multi-organ configurations. Visualizations of deep feature
maps reveal that the dynamic graph reconstruction of DGR-
Net maintains a sharper focus on target organs and aligns
the referenced GT.
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Figure 1. Additional visual comparison with SOTA segmentation networks on CHAOS-T2, ACDC, BTCV, Cervix, and CMR datasets.
Red box is the zoomed-in GT. Green box is the zoomed-in predicted mask.



Figure 2. Additional visual comparison of the mis-segmentation between DGRNet and SOTA segmentation networks. ➚ points out the key
regions.



Figure 3. Additional visual comparison of the organ-reconstruction between DGRNet and SOTA segmentation networks on CHAOS-T2,
ACDC, BTCV, Cervix, and CMR datasets.
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