
Appendix of “MotionStreamer: Streaming Motion Generation via
Diffusion-based Autoregressive Model in Causal Latent Space”

A. Implementation Details

For the Causal TAE, both the encoder and decoder are based
on the 1D causal ResNet blocks [6]. The temporal down-
sampling rate l is set to 4 and all motion sequences are
cropped to N = 64 frames during training. We train the
first 1900K iterations with a learning rate of 5e-5 and the re-
maining 100K iterations with a learning rate of 2.5e-6. We
use the AdamW optimizer [9] with [β1, β2] = [0.9, 0.99]
and a batch size of 128. We provide an ablation study on
the hyperparameter λ of root loss Lroot in Tab. 1. The la-
tent dimension dc and hidden size are set to 16 and 1024,
respectively. The latent dimension significantly impacts the
compression rate, while the hidden size affects the model’s
capacity. Both factors influence reconstruction and subse-
quent generation quality, requiring a careful trade-off be-
tween compression efficiency and generative performance.
Ablation studies on the latent dimension and hidden size
are provided in Tab. 2. To further improve the quality of the
reconstructed motion, we add a linear layer after the embed-
ded Gaussian distribution parameters as a latent adapter to
get a lower-dimensional and more compact latent space for
subsequent sampling, as proposed in [2].

For the Transformer inside the AR model, we use the ar-
chitecture akin to LLaMA [14] with 12 layers, 12 attention
heads and 768 hidden dimension. The ablation for different
scales of the Transformer is provided in Tab. 3. Block size is
set to 78 and we choose RoPE [12] as the positional encod-
ing. For the diffusion head after Transformer, we use MLPs
with 1792 hidden dimension and 9 layers. The output vec-
tors of the Transformer serve as the condition of denoising
via AdaLN [11]. We adopt a cosine noise schedule with 50
steps for the DDPM [8] denoising process following [13].
During training, the minimum and maximum length of mo-
tion sequences are set to 40 and 300 for both datasets. We
insert an additional reference end latent at the end of each
motion sequence to indicate the stop of generation. For
Two-Forward strategy, a cosine scheduler is employed to
control the ratio of replaced motion tokens, which can be
formulated as: γt = 1

2 (1 − cos(πtT )), where t is current it-
eration step and T is the total number of iterations. When
t = 0, γt = 0, indicating that no generated motion tokens
in the first forward pass are replaced, thus relying on the
ground-truth motion tokens only. When t = T , γt = 1, in-
dicating that all generated motion tokens in the first forward

λ FID ↓ MPJPE ↓

5.0 0.696 25.2

6.0 0.684 24.8

7.0 0.661 22.9
8.0 0.682 24.2

9.0 0.704 26.8

Table 1. Analysis of λ on the HumanML3D [4] test dataset.

pass are replaced, thus relying on the generated motion to-
kens only. We use the same optimizer as the Causal TAE
and a batch size of 256. The initial learning rate is 1e-4 af-
ter 10K warmup iterations and decay to 0 for another 90K
iterations using cosine learning rate scheduler. Our experi-
ments are conducted on A800 GPUs.

B. Causal TAE Architecture
The detailed architecture of the Causal TAE is shown in
Fig. 3 and Tab. 4. Input motion sequences are first en-
coded into a latent space with a 1D causal ResNet. The
latent space is then projected to a sequence of Gaussian
distribution parameters. Then a linear adapter is applied
to the embedded Gaussian distribution parameters to lower
the dimension of latent space. Sampling is performed in the
lower-dimensional latent space. The decoder comprises a
mirror process to progressively reconstruct the motion se-
quence.

C. AR Model Architecture
We provide an ablation study on the architecture of the AR
model, including the number of Transformer layers, atten-
tion heads, hidden dimension, and the number of diffusion
head layers, as shown in Tab. 3. We finally leverage the 12-
layer, 12-head, 768-hidden dimension, and 9-layer diffusion
head architecture.

D. Classifier-free guidance
We adopt the classifier-free guidance (CFG) [7] technique
to improve the generation quality of the autoregressive mo-
tion generator. Specifically, during training, we replace



Methods Reconstruction Generation

FID ↓ MPJPE ↓ FID ↓ R@1 ↑ R@2 ↑ R@3 ↑ MM-D ↓ Div →
Real motion - - 0.002 0.702 0.864 0.914 15.151 27.492

(12,512) 8.862 38.5 21.078 0.600 0.759 0.827 17.143 27.456
(12,1024) 1.710 31.2 12.778 0.628 0.779 0.845 16.756 27.408
(12,1280) 2.035 32.9 12.872 0.624 0.780 0.849 16.587 27.455
(12,1792) 1.563 28.3 11.916 0.628 0.782 0.850 16.468 27.461
(12,2048) 1.732 28.9 13.394 0.611 0.770 0.831 16.852 27.417

(14,512) 2.902 33.6 16.612 0.607 0.772 0.836 16.947 27.328
(14,1024) 0.838 27.5 11.933 0.627 0.778 0.840 16.593 27.443
(14,1280) 0.919 26.4 12.603 0.603 0.772 0.841 16.863 27.414
(14,1792) 0.732 24.8 11.828 0.628 0.776 0.848 16.652 27.122
(14,2048) 1.370 26.5 12.261 0.621 0.768 0.841 16.734 27.417

(16,512) 1.300 30.3 14.096 0.605 0.770 0.839 16.882 27.306
(16,1024) 0.661 22.9 11.790 0.631 0.802 0.859 16.081 27.284
(16,1280) 1.087 25.0 12.975 0.598 0.761 0.831 17.002 27.403
(16,1792) 0.540 22.0 11.992 0.630 0.767 0.846 16.644 27.419
(16,2048) 1.547 26.2 12.778 0.604 0.755 0.824 16.897 27.306

(18,512) 2.043 27.7 19.150 0.553 0.701 0.775 17.776 27.345
(18,1024) 0.656 23.4 11.838 0.619 0.775 0.840 16.816 27.356
(18,1280) 0.820 23.1 11.815 0.629 0.801 0.847 16.816 27.461
(18,1792) 1.045 22.1 12.514 0.612 0.774 0.840 16.915 27.412
(18,2048) 0.595 21.5 11.803 0.613 0.801 0.832 17.004 27.451

(20,512) 0.531 24.5 12.247 0.613 0.765 0.832 16.920 27.277
(20,1024) 0.379 19.9 11.814 0.630 0.765 0.847 16.802 27.485
(20,1280) 0.429 20.1 16.465 0.557 0.705 0.774 17.680 27.490
(20,1792) 0.548 20.1 11.845 0.616 0.776 0.842 16.919 27.392
(20,2048) 0.690 20.7 11.910 0.625 0.782 0.844 16.785 27.346

Table 2. Ablation Study of different Causal TAE architecture designs on HumanML3D [4] test set. Each generation model remains the
same. MPJPE is measured in millimeters. (16, 1024) indicates the latent dimension and hidden size of the Causal TAE.

10% of the text within a batch with a blank text as uncon-
ditioned samples, while during inference, CFG is applied to
the denoising process of the diffusion head, which can be
formulated as:

ϵg = ϵu + s(ϵc − ϵu). (1)

where ϵg is the guided noise, ϵu is the unconditioned noise,
ϵc is the conditioned noise, s is the CFG scale. We provide
an ablation study on the CFG scale s in Fig. 1. Finally, we
choose s = 4.0 for all experiments.

E. Failure of Inverse Kinematics

Post-processing for 263-dimensional motion represen-
tation. Most previous works [5, 13, 15] uses 263-
dimensional motion representation [4].

Figure 1. Ablation of CFG scale on HumanML3D [4] test set.
scale = 1 means do not use CFG.



AR. layers AR. heads AR. dim Diff. layers FID ↓ R@1 ↑ R@2 ↑ R@3 ↑ MM-D ↓ Div →
8 8 512 2 14.336 0.598 0.747 0.802 16.983 27.287
8 8 512 3 13.764 0.602 0.758 0.819 16.972 27.242
8 8 512 4 12.893 0.608 0.764 0.828 16.661 27.351
8 8 512 9 11.823 0.623 0.772 0.835 16.655 27.385
8 8 512 16 12.460 0.621 0.778 0.849 16.784 27.410

12 12 768 2 11.899 0.601 0.763 0.828 16.952 27.406
12 12 768 3 11.798 0.630 0.779 0.844 16.761 27.482
12 12 768 4 12.051 0.604 0.762 0.829 16.940 27.401
12 12 768 9 11.790 0.631 0.802 0.859 16.081 27.284
12 12 768 16 11.825 0.624 0.773 0.844 16.757 27.341
16 16 1024 2 12.836 0.606 0.765 0.832 16.901 27.319
16 16 1024 3 12.436 0.601 0.761 0.830 16.919 27.302
16 16 1024 4 13.005 0.614 0.763 0.830 16.967 27.196
16 16 1024 9 12.093 0.614 0.778 0.843 16.850 27.308
16 16 1024 16 11.812 0.630 0.780 0.846 16.598 27.286

Table 3. Ablation study of AR Model architecture on HumanML3D [4] test set. For each architecture, we use the same Causal TAE.

The representation can be written as follows:

x = {ṙa, ṙx, ṙz, ry, jp, jv, jr, c}, (2)

where the root is projected on the XZ-plane (ground plane),
ṙa ∈ R1 denotes root angular velocity along the Y-axis,
(ṙx, ṙz ∈ R) are root linear velocities on the XZ-plane,
ry ∈ R is the root height, jp ∈ R3(K−1), jv ∈ R3K ,
and jr ∈ R6(K−1) are local joint positions, local veloci-
ties, and local rotations relative to the root, K is the number
of joints (including the root), and c ∈ R4 is the contact la-
bel. For SMPL characters, we have K = 22 and we get
2 + 1 + 1 + 3 × 21 + 3 × 22 + 6 × 21 + 4 = 263 dimen-
sions. In the original implementation [4], the joint rotation
is directly solved using Inverse Kinematics (IK) with rela-
tive joint positions. In such way, the joint loses twist rota-
tion and directly applying the joint rotation to the character
faces a lot of rotation error [3], as shown in Fig. 2. To over-
come this issue, previous works [5, 13, 15] only uses the
positions and employs SMPLify [1] to solve the real SMPL
joint rotation. This process is time-consuming (around 60
seconds for a 10 seconds motion clip) and also introduces
unnatural results like jittering head [13]. Most data in the
HumanML3D [4] dataset comes from the AMASS [10]
dataset. As the AMASS dataset provides the SMPL joint
rotation, we slightly modify the motion representation by
directly using the SMPL joint rotation and make it a 6D
rotation for better learning. Consequently, we remove the
slow post-processing step and easily drive the SMPL char-
acter with the generated rotations. The processing scripts to
obtain our 272-dim motion representation are available at
https://github.com/Li-xingXiao/272-dim-
Motion-Representation.

F. Limitations and Future work

Limitations. Despite its effectiveness, the streaming
generation paradigm limits the applications of motion in-
betweening and localized editing of intermediate tokens, as
it inherently relies on unidirectional modeling. This limi-
tation restricts flexibility in scenarios requiring fine-grained
adjustments, such as seamlessly inserting new motions be-
tween existing frames or interactively refining motion de-
tails while preserving global coherence.

Future work. Future work could explore hybrid strategies
that allow bidirectional refinement without compromising
streaming generation. One potential way is to predict a set
of future latents at each step, which could enable motion in-
between and localized editing while preserving streaming
manner.

https://github.com/Li-xingXiao/272-dim-Motion-Representation
https://github.com/Li-xingXiao/272-dim-Motion-Representation


Figure 2. Failure of Inverse Kinematics. The joint rotation is directly solved using IK with relative joint positions, which leads to
unnatural results like jittering body parts.
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Components Architecture

Causal TAE Encoder (0): CausalConv1D(Din, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))
(1): ReLU()
(2): 2 × Sequential(

(0): CausalConv1D(1024, 1024, kernel size=(4,), stride=(2,), dilation=(1,), padding=(2,))
(1): CausalResnet1D(

(0): CausalResConv1DBlock(
(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(9,), padding=(18,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))

(1): CausalResConv1DBlock(
(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(3,), padding=(6,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))

(2): CausalResConv1DBlock(
(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))))

(3): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))

Causal TAE Decoder (0): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))
(1): ReLU()
(2): 2 × Sequential(

(0): CausalResnet1D(
(0): CausalResConv1DBlock(

(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(9,), padding=(18,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))

(1): CausalResConv1DBlock(
(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(3,), padding=(6,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))

(2): CausalResConv1DBlock(
(activation1): ReLU()
(conv1): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))
(activation2): ReLU()
(conv2): CausalConv1D(1024, 1024, kernel size=(1,), stride=(1,), dilation=(1,), padding=(0,)))))

(1): Upsample(scale factor=2.0, mode=nearest)
(2): CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))

(3) CausalConv1D(1024, 1024, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))
(4): ReLU()
(5): CausalConv1D(1024, Din, kernel size=(3,), stride=(1,), dilation=(1,), padding=(2,))

Table 4. Detail architecture of the proposed Causal TAE.


