
Appendix

A. Algorithms
In this section, we provide the pseudo-codes for our pro-
posed privacy attack, the Reminiscence Attack (ReA) (de-
scribed in Section 3), and the unlearning framework Or-
thogonal Unlearning & Replay (OUR) (defined in Sec-
tion 4).

Algorithm 1 Class-wise Reminiscence Attack (ReA)

1: Require: OOD dataset Dood, reference OOD set D′, assigned
unlearned label yu, loss function L

2: Parameters: Max iterations Idxmax, learning rates {lrj}Jj=1

3: if Black-Box Scenario then
4: θ′0 ← ModelExtract(F (·; θu)) {Model extraction}
5: Fini ← Copy(F (·; θ′0)) {Save initial model}
6: else if White-Box Scenario then
7: θ′0 ← θu {Direct access}
8: end if
9: for lrj ∈ {lrj}Jj=1 do

10: Initialize θ′ ← θ′0
11: for i = 1 to Idxmax do
12: Compute loss: L = 1

|Dood|
∑

x∈Dood L(F (x; θ′), yu) +
1

|D′|
∑

x∈D′ L(F (x; θ′), Fini(x))

13: θ′ ← θ′ − lrj · ∇θ′L {SGD update}
14: if AccDood(F (·; θ′)) > 0.9 then
15: Record Idxr(Dood, lrj)← i
16: break
17: end if
18: end for
19: end for
20: Compute confidence score:

A′(Dood) = 1− 1
J·Idxmax

∑J
j=1 Idxr(Dood, lrj) Equation 6

21: Output: Confidence score A′(Dood)

Algorithm 2 Sample-wise Reminiscence Attack (ReA)

1: Require: Inference datasetDinfer, victim model F (·; θu) {i.e.,
the unlearned model}

2: Parameters: Pseudo retain set size Nr , training epochs
EPOCHS = 5, learning rate lr

3: Obtain confidence scores: {s} ← A′(Dinfer) {Using MIA-
LiRA method}

4: Select top-Nr indices {indi}Nr
i=1 from {s} based on confi-

dence
5: Construct pseudo retain set: D′

r ← Dinfer[{indi}Nr
i=1] {Subset

selection}
6: for e = 1 to EPOCHS do
7: Compute loss:

L = 1
|D′

r|
∑

(x,y)∈D′
r
L(F (x; θ′), y)

8: θ′ ← θ′ − lr · ∇θ′L {SGD update}
9: end for

10: Output: Updated confidence scores {A′(F (x; θ′))}x∈Dinfer

Algorithm 3 Orthogonal Unlearning & Replay (OUR)
Framework

1: Require: Original model F (·; θ), full dataset D, unlearning
set Du

2: Parameters: Phase epochs e1, e2, norm threshold ∆thr, learn-
ing rate lr

3: Compute remaining set: Dr ← D \ Du

4: Store initial parameters: θini ← θ = [θ1, · · · ]
Phase 1: The Orthogonal Unlearning

1: for e = 1 to e1 do
2: Compute orthogonal loss:

Lorth =
∑

(x,y)∈Du

∑k
l=1 ∥Fl(x; θ)− Fl(x; θ

0)∥22
3: θ ← θ − lr · ∇θLorth {Orthogonality Update}
4: Compute the maximum parameter change:

∆max ← maxi∈|θ|
∥θi−θini

i ∥2
|θi|

5: if ∆max > ∆thr then
6: break {Early stopping}
7: end if
8: end for

Phase 2: The Replay Phase
1: for e = 1 to e2 do
2: Compute loss:

L=
1

|Dr|
∑

(x,y)∈Dr
L(F (x; θ), y)

3: θ ← θ − lr · ∇θL {Retain knowledge}
4: end for
5: Output: Unlearned model F (·; θu) where θu ← θ

B. The Proportion of Stable Neurons after Or-
thogonal Unlearning

Orthogonal unlearning induces rapid utility degradation by
excluding the retained dataset, yet model functionality re-
covers efficiently in the replay phase due to minimal param-
eter perturbations. To validate this, we empirically analyze
neuron stability in a ViT model trained on CIFAR-20 after
class-wise unlearning.

We define the change for each parameter as follows.
Since parameters vary in size, we define the change of pa-
rameter θi as:

  \small \Delta (\theta _i) = {\frac {\|\theta _i - \theta _i^\text {ini}\|_2}{|\theta _i|}}, 
 




 (8)

where θini
i represents the parameter’s state before unlearn-

ing. To account for differences in parameter dimensions,
we normalize the change by its size |θi| for better observa-
tion. The maximum parameter change is then defined as:

  \small \Delta _\text {max} = \max _{i\in |\theta |}{\frac {\|\theta _i - \theta _i^\text {ini}\|_2}{|\theta _i|}}  


 



(9)

Figure 7 reports that parameter changes after unlearning
remain highly localized, with magnitudes concentrated be-
low 0.0005, which is three times smaller than the most mi-
nor changes observed in random models. Further analysis in
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Figure 8. Parameter Changes versus The replay speed measured
by epochs.
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Figure 9. Visualized loss landscapes of unlearned data and non-
training data around unlearned models in CIFAR100 and CI-
FAR10 experiments.

Figure 8 confirms that smaller parameter changes correlate
strongly with faster utility recovery during replay, which
requires fewer training epochs. These results demonstrate
that orthogonal unlearning preserves critical neural patterns
despite utility drops, enabling efficient restoration through
targeted replay rather than full retraining.

C. Supplementary Visualized Loss Landscape

We extend Figure 2 to CIFAR-10/100-ResNet18 in Fig-
ure 9, confirming that residuals, i.e., discrepancies between
unlearned and non-training data, consistently appear across
architectures. These are reflected in fine-tuning trajecto-
ries (dashed lines): in class-wise unlearning (Figure 9a),
the loss of unlearned classes converges to sharp minima
while OOD classes remain unconverged; in sample-wise
unlearning (Figure 9b), unlearned samples exhibit sharp
loss drops while test losses stay stable. These differences
expose membership privacy.

D. Experimental Setups and Approximate Un-
learning Benchmarks

D.1. Setups
ReA Setups. For class-wise ReA attacks, the ratio of ref-
erence data for logits constraints to inferred data is set to
14 : 1 for CIFAR20 and 6 : 1 for CIFAR100 during
reminiscence. The maximum number of training iterations
Idxmax is set to 75. We employ cross entropy loss L during
its reminiscence process, with SGD with momentum (0.9)
and weight decay 5e−4. In sample-wise ReA, the size of
“pseudo” retained dataset Nr is 20,000.
OUR Unlearning Method Setups. For the implementa-
tion of OUR, we adopt the following hyper-parameter con-
figurations. The training process consists of distinct phases
tailored for different architectures.

For ResNet18 experiments, the orthogonal unlearning
and replay phases each span 8 epochs, with learning rates
of 0.0018 and 0.005, respectively; a 0.5 decay is applied at
epoch 3 during replay phases. For ViT experiments, the un-
learning phase lasts 7 epochs. The replay phase runs for 7
epochs for class-wise unlearning or 11 epochs for sample-
wise unlearning, with learning rates of 0.0008 and 0.0004,
and decay factors of 0.5 and 0.2 at epochs 4 and 6. The
ablation study on the number of epochs in OUR is provided
in Appendix E.2. Besides, the regularization component in-
volves an l1 regularization factor of 1e−5 to enhance model
sparsity [25].
Implementation Details. All classification experiments are
conducted using PyTorch on 2×RTX 4090 GPUs, and dif-
fusion model experiments are performed on 4×RTX 4090
GPUs.

D.2. Approximate Machine Unlearning Bench-
marks

• Fine-tuning (FT) [25, 45]. It leverages the phenomenon
of catastrophic forgetting to continue training the pre-
trained model F (.; θ) on the remaining dataset Dr for
a limited number of iterations, to forget the unlearned
dataset Du which is no longer trained upon.

• Gradient Ascent (GA) [18, 40]. This approach seeks
to achieve unlearning by reversing the gradient descent
process on Du, thereby erasing its optimization traces in
the model F (.; θ).

• Random Label (RL) [10, 18]. It assigns random labels
for Du to erase the model F (.; θ)’s memory of them.

• Influence Unlearning(IU) [25]. It utilizes the wood-
fisher method. It estimates the influence of Du on F (.; θ)
and designs perturbation strategies to erase this influence
from the parameters θ.

• FisherForgetting (FF) [17]. FF perturbs θ with addi-
tive Gaussian noise, where the covariance is derived from
the fourth root of the Fisher Information matrix over Dr.



While theoretically rigorous, its reliance on Fisher matrix
inversion limits parallel efficiency and increases compu-
tational overhead compared to gradient-based methods.

• Boundary-based Unlearning (BU) [8]. BU shifts the de-
cision boundary of F (.; θ) to mimic a retrained model’s
behavior, thereby bypassing parameter-space optimiza-
tion.

Additionally, there are five optimized unlearning frame-
works.
• l1 sparsity [25]. This framework bridges approximate

and exact unlearning by pruning non-critical weights.
Sparsity reduces the parameter space, thus it narrows the
gap between approximate and ideal unlearning outcomes
while maintaining efficiency.

• SalUn [13]. It introduces weight saliency to focus un-
learning efforts on critical parameters. Analogous to in-
put saliency in explainable AI, it prioritizes weights with
high influence on Du.

• SCRUB [28]. It uses a teacher-student architecture where
the student selectively disregards the teacher’s knowledge
about Du. This “unlearning-by-disobedience” approach
scales without restrictive assumptions.

• SFRon [24]. It unifies gradient-based MU by decompos-
ing updates into three components: forgetting gradient
ascent, retaining gradient descent, and saliency-guided
weighting. It further incorporates a Hessian-aware man-
ifold geometry to align unlearning trajectories with the
output probability space to balancing utility performance
and forgetting efficacy.

• Refined-Unlearning Meta-algorithm (RUM) [48]. It
refines the forget set Du into homogeneous subsets and
applies specialized unlearning strategies to each. Its
meta-algorithm orchestrates existing methods to compre-
hensively unlearn Du.

E. Complementary Experimental Results

E.1. Ablation Study of Layers {l}k Seleted in OUR
To determine the optimal layer configuration for orthogo-
nal unlearning (OUR), we conduct an ablation study eval-
uating three distinct layer-selection strategies for lk: using
output layers from the first three transformer blocks (First
3), the last three blocks (Last 3), and a distributed set com-
prising the first, middle, and final blocks (Span 3). Ex-
periments on CIFAR-20 evaluate unlearning performance
through ToW of Unlearning and resistance against relearn-
ing attacks through ReA Accuracy, where values approach-
ing 1.0 and 50% respectively indicate optimal outcomes.

As shown in Figure 10, the Span 3 configuration
achieves the most favorable balance across both evaluation
metrics for class-wise and sample-wise OUR implementa-
tions, which attains near-optimal ToW while maintaining
ReA accuracy closest to random-guess performance.
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Figure 10. OUR performance with different {l}k settings: first 3 /
last 3 / span 3 denote the output layers of the first 3 blocks, last 3
blocks, and first, middle, and last blocks, respectively.

E.2. Ablation Study of Number of Epochs in OUR
To optimize the training efficiency and unlearning effective-
ness of OUR unlearning, we conduct an ablation study ex-
amining epoch configurations for its two-phase training: or-
thogonal unlearning (e1) and replay (e2). We evaluate three
critical metrics across five repeated trials on CIFAR20-
ViT, CIFAR10-ResNet18, and CIFAR100-ResNet18: un-
learning performance (ToW of Unlearning), and resistance
against relearning attacks (ReA Attack Accuracy).

As shown in Figure 11, optimal configurations emerge
for each setting: CIFAR20-ViT requires 2 e1 and 7 e2
for sample-wise and 7 e1 and 11 e2 for class-wise OUR;
CIFAR10-ResNet18 requires 8 e1 and 8 e2 for sample-
wise OUR; CIFAR100-ResNet18 requires 8 e1 and 8 e2
for class-wise OUR. These configurations simultaneously
achieve near-optimal ToW (≈ 1.0) and strong ReA resis-
tance while minimizing RTE.

E.3. Ablation Study of ReA Learning Rate Set
The learning rate (lr) during the reminiscence process
largely impacts class-wise ReA efficacy, as it directly af-
fects the scores (A′ in Equation 3) for membership detec-
tion. In contrast, sample-wise ReA remains robust to lr vari-
ations, requiring only a minimal lr of 0.1× the training lr for
model convergence. Here, we evaluate whether our multi-
lr aggregation strategy (Section 3.1) enhances robustness to
this parameter in class-wise ReA.

Figure 12 compares resonance differences (the differ-
ence of resonance index between OOD and unlearned
classes, ∆Idxr) for all MU methods at different lr on
CIFAR-20, which is presented as bars. The left y-axis
shows resonance differences ∆Idxr (positive values indicate
faster convergence for unlearned classes), averaged over 10
trials. The right y-axis contrasts ReA privacy attack ac-
curacy under single-lr (blue lines) and multi-lr aggregation
(red dashed line) strategies. Key observations. First, single
lr= 0.001 maximizes ReA effectiveness for most MU meth-
ods except GA [40] and its variant, SFRon [24], which indi-
cates that optimal lr ranges are dependent on MU methods.
Second, ReA’s performance collapses at lr= 0.1. Third,
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Figure 11. Ablation study of e1 and e2 in OUR. Gray vertical bars
indicate error bars. Class-wise ReA is evaluated 10 times for both
unlearn and OOD classes per experiment. Results are averaged
over 5 independent trials.
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Figure 12. Resonance difference (Idxr of OOD classes minus
that of unlearned classes) and ReA attack accuracy across learn-
ing rates in ReA. Gray bars represent error bars.

the multi-lr aggregation strategy achieves superior results
without method-specific tuning. Notably, our OUR method
exhibits near-zero resonance difference, demonstrating in-
herent resistance to ReA attacks.
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Figure 13. ReA Attack Accuracy versus Convergence Threshold

E.4. Ablation Study of ReA Convergence Threshold
To evaluate how convergence threshold affects ReA perfor-
mance, we conduct an ablation study on this key parameter.
The convergence threshold represents the prediction accu-
racy threshold in class-wise ReA to determine the resonance
index. Experiments perform on CIFAR-20 and evaluate the
ReA performance targeting five selected unlearning bench-
marks: GA, RL, SCRUB, SalUn, and RUM. The results in
Figure 13 confirm that thresholds between 70% and 80%
yield optimal ReA attack accuracy across all evaluated un-
learning methods.

E.5. The Complete ROC Analysis of Privacy At-
tacks in Section 5.2

This section provides the full ROC analysis for machine un-
learning benchmarks in CIFAR20 experiments. Figure 14
shows the ROC figures of class-wise membership inference
attacks (MIA). Figure 15 shows the ROC figures of sample-
wise membership inference attacks (MIA).

E.6. The Complete Representation Visualization
Analysis of Experiments in Section 5.3

This appendix provides additional visualizations of lower-
dimensional embeddings for Figure 4 in Section 5.3. All
visualization results are presented in Figure 16. Moreover,
the representation attributes are quantified using the follow-
ing metrics:
• Intra-class Variance (Variance) (var) [19]: Measures

class compactness by calculating the average squared dis-
tance from each point to the class centroid. A signifi-
cantly lower variance than in the retrained model suggests
that the unlearned data are densely clustered, indicating
knowledge residue.

• Silhouette Score (s) [38]: Assesses clustering quality
through the average silhouette coefficient for each point
within the unlearned class, ranging from -1 to 1. High
scores suggest that the model retains familiarity with class
knowledge, pointing to knowledge residue.

• Overlap Degree (Overlap) (o) [2]: Evaluates the over-
lap between the unlearned subset and others using kernel
density estimation (KDE). A lower score suggests an ef-
fective classification of unlearned data, indicating knowl-
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Figure 14. ROC of class-wise MIA. The notable fluctuations result
from having only 300 inferred objects in each figure.

edge residue.

E.7. Supplementary Description of Setups and Ex-
periments in Concept Unlearning

E.7.1. Setups
Models. We utilize the pretrained stable diffusion model
stable-diffusion-v1-5 [36] with prior preservation
enabled, fine-tuning both the text encoder and diffusion
model for 50 epochs using AdamW optimizer (learning rate
is 5e−7), consistent with the work [43].
OUR Setups. For OUR unlearning method, the orthogonal
unlearning is applied only to output layers of the last two
hidden modular blocks (up blocks) and the final con-
volutional layer (conv out), with scaled orthogonal loss
factors [5e−9, 5e−8] to stabilize training. The two-phase
optimization spans 10 epochs: 1 epoch for orthogonal un-
learning (learning rate is 5e−6) and 9 epochs for the replay
phase (learning rate is 8e−7), both using AdamW. Since the
generation task involves fine-tuning a highly parameterized
model, we do not apply L1 regularization to avoid compro-
mising its capability.
Concept-Unlearning Benchmark Setups. SalUn [13] uti-
lizes relabeled prompts (e.g., “This is a photo of James”)
to erase targeted concepts, while Meta Unlearning [15] hin-
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Figure 15. ROC of sample-wise MIA.

ders the reconstruction of unlearned concepts from related
concepts during unlearning, which is described by “this is a
photo of a woman”. In terms of parameter configuration,
SalUn and SFRon adopt identical hyper-parameters with
learning rates of 1e−6 across 10 training epochs, whereas
Meta Unlearning operates at a learning rate of 1e−5 over
50 optimization steps. These settings strictly adhere to their
original designs.
Privacy Attack Setups. For ReA, distinct resonance in-
dexes emerge between the unlearned and out-of-distribution
(OOD) classes when fine-tuning with only the inferred
class. Thus, ReA does not rely on retained or pseudo-
retained datasets in concept unlearning. It employs a learn-
ing rate of 5e−6, and each inferred class consists of four
samples. The prompt it used is a random name, e.g., Emily.
For DiffAtk [47], the number of adversarial tokens is set to
5, and the embedding method for the adversarial prompt is
prefix-based.

E.7.2. Metrics
The evaluation metrics for generated portrait outputs (de-
fined in Section 5.5) are detailed as follows.
• Identity Score Matching (ISM) [43]. It evaluates iden-

tity consistency between generated and reference faces
using ArcFace embeddings [11]. Lower values indicate
better identity preservation. For identity-specific concept
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Figure 16. Representation space visualization of the class-wise
unlearned model in CIFAR20 experiments.

Table 7. Performance of Identity-specific Concept Unlearning

Metrics UISM RISM FID(↓) BRISQUE(↓) RTE (s)
Retrain 0.13±0.02(0.00) 0.76±0.02(0.00) 101.82±8.33 10.76±1.38 937.50

SFRon [24] 0.50±0.08(0.37) 0.59±0.03(0.17) 134.93 17.58 483.15

unlearning, we introduce two metrics: Unlearning ISM
(UISM), which evaluates the ISM of the unlearned iden-
tity, and Retaining ISM (RISM), which evaluates the
ISM of the retained identity. Both are used to observe
how effectively the unlearned identity is removed and the
remaining identity is preserved.

• Fréchet Inception Distance (FID) [26]. It quantifies the
similarity between real and generated face distributions
via Inception-v3 features. Lower scores reflect closer
alignment to real data statistics.

• BRISQUE [34]. It assesses perceptual quality without
reference by detecting unnatural patterns (e.g., artifacts,
textures) in spatial features. Lower values denote more
natural outputs.

• Resonance Index in ReA Attack (Idxr). It measures the
speed of identity recovery during the ReA process, which
records the iteration where the ISM reaches 0.7.

Table 8. Privacy Attack against Identity-specific Concept Unlearn-
ing

Attacks Resonance Index, Idxr , (Maximum = 10) × 10 @ ISM
Retrain SFRon [24]

DiffAtk [47] 10±0.0@0.18 10±0.0@-0.04
ReA 6.5±1.0@0.71 4±0.5@0.79

Table 9. Images of Identity-specific Concept Unlearning

Target Retrain SFRon [24]
Unlearned Identity. Prompt: “a photo of Sarah”

Retained Identity. Prompt: “a photo of Laura”
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Figure 17. Training trajectories in the Reminiscence Attack under
black-box scenarios. 3% of each type of data is available. The
light-colored areas represent the error bars at different learning
rates.

E.7.3. Experimental Results on an Additional Concept
Unlearning Benchmark: SFRon [24]

This section presents an evaluation of SFRon [24] as an ad-
ditional concept unlearning benchmark. Table 7 shows its
performance in identity-specific concept unlearning, where
UISM remains as high as 0.50, indicating ineffective re-
moval of identity information. Table 9 provides further evi-
dence, showing that the unlearning process mainly reduces
image quality while preserving key identity features. As a
result, SFRon is very vulnerable when attacked by ReA. It
converges quickly in ReA, as shown in Table 8, where its
Resonance Index reaches only 10, far below the retrained
model’s 70.



Table 10. Model Extraction Performance

Dataset
ME Accuracy (Fidelity) / %

FT GA RL IU

Cifar20 (-5)
60.36 61.64 58.81 56.02

(77.73) (78.79) (73.65) (69.53)

Cifar100 (-5)
54.83 56.74 58.81 56.29

(69.14) (71.24) (73.63) (70.54)

Table 11. Reminiscence Attack Under Black-Box Scenarios

Dataset
Accuracy (TPR @ 0.1 FPR) / % Cost

FT GA RL IU (s)

Cifar20 (-5)
83.00 65.50 82.50 77.50

9.16e3(90.00) (55.00) (70.00) (80.00)

Cifar100 (-5)
80.00 58.50 76.25 80.25

1.36e4(85.00) (40.00) (57.50) (65.00)

E.8. Evaluating Reminiscence Attack under Black-
box Scenarios

We investigate the class-wise ReA attack performance in
black-box scenarios, to explore the transferability of knowl-
edge residue from approximate unlearning in model extrac-
tion [41]. In white-box attacks, the attacker has direct ac-
cess to the target model, allowing the ReA to be launched
immediately. Conversely, in black-box scenarios, an addi-
tional preparatory step is required. This involves using data-
free model extraction (ME) attacks (DFME) [41] to obtain
a local substitute model on which the ReA is then launched.
In black-box scenarios, we set the attacker’s query budget
to 20M and 30M in the ME step for Cifar20 (-5) and Ci-
far100 (-5), around the primary setup of DFME [41]. Four
approximate unlearning benchmarks are evaluated.

Table 10 presents the accuracy and fidelity of substitute
models obtained via DFME, and Table 11 reports the at-
tack performance and computational cost of class-wise ReA
against different unlearning methods. The adversarial set
size is 3% for CIFAR20 (-5) and 20% for CIFAR100 (-5).
Additionally, Figure 17 visualizes the reminiscence process
in black-box settings, revealing that despite instability in
training due to fidelity loss in ME, the unlearned dataset
consistently exhibits distinct resonance.
Results. Overall, ReA remains highly effective in black-
box scenarios, nearly matching its white-box performance
despite higher computational costs. This suggests that lo-
cal models from ME inherit significant class-type resid-
ual knowledge, exposing fundamental vulnerabilities in ap-
proximate unlearning methods.
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