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A. Experimental Details
A.1. Datasets
RoboTron-Sim is trained using a hybrid data strategy com-
bining:
• Real-world Data: 28,130 samples from nuScenes[1].
• Simulated Data: 47,553 purpose-built samples from

our Hard-case Augmented Synthetic Scenarios(HASS)
dataset, generated in CARLA simulator[2], designed to
address the inherent imbalance in real-world data distri-
bution. While the dataset covers a broad range of driv-
ing situations, it places particular emphasis on addressing
challenging cases, including H2D scenarios and Long-
Tail scenarios. Partial results are illustrated in Figure S1.

A.2. Evaluation Metrics
Following BEV-Planner [5], we evaluate via L2 Distance,
Collision Rate, and Boundary Violation Rate.
• Trajectory Accuracy (L2 Distance):

L2 =
1

T

T∑
t=1

∥p̂t − pgtt ∥2 (1)

where p̂t and pgtt denote the predicted and ground-truth
positions at timestep t over a T = 3s horizon.

• Safety Metrics (Collision Rate):
Computes the percentage of predicted trajectories that re-
sult in collisions with other agents or obstacles.

Collision =
1

T

T∑
t=1

Ncollision,t

Ntotal,t
× 100% (2)

where Ncollision is the number of predicted trajectories
leading to collisions, and Ntotal is the total number of eval-
uated trajectories at timestep t over a T = 3s horizon.

• Boundary Violation Rate:

Boundary =
1

T

T∑
t=1

Nviolation,t

Ntotal,t
× 100% (3)

where Nviolation counts trajectories exceeding road bound-
aries, and Ntotal is the total evaluated trajectories at
timestep t over T = 3s. Calculated by comparing ego
segmentation masks with drivable area labels.

B. More Results
B.1. Robustness of HASS
We investigate the performance trend divergence between
simulated data augmentation and real data-only scenarios

nuScenes HASS L2(m) Collision(%)

0% 100% 1.24 0.99
10% 100% 0.87 0.89
25% 100% 0.67 0.64
50% 100% 0.63 0.57
75% 100% 0.61 0.54

100% 100% 0.56 0.58

Table S1. Performance variation with nuScenes blending ratio un-
der full HASS integration.

nuScenes HASS L2(m) Collision(%)

10% 0% 2.41 3.22
25% 0% 1.24 1.46
50% 0% 1.15 1.54
75% 0% 1.03 1.03

100% 0% 0.72 0.67

Table S2. Performance scaling with nuScenes blending ratio
(HASS Excluded).

across multiple orders of magnitude in real data volume in
RoboTron-Sim, with quantitative comparisons presented in
Table S1 and Table S2. Table S1 presents quantitative re-
sults with full simulated data integration, while Table S2
provides detailed metrics when trained without any simu-
lated data, using real-world data exclusively. The exper-
imental results demonstrate enhanced stability of overall
performance through simulated data augmentation.

B.2. Effectiveness of HASS
We generate two distinct datasets based on nuScenes sce-
narios: General Augmented Synthetic Scenarios (GASS)
for common driving conditions and Hard-case Augmented
Synthetic Scenarios (HASS) for challenging situations,
aiming to investigate which synthetic data generation mech-
anisms yield more meaningful performance improvements.
The evaluation results categorized by individual scenarios
are presented in Table S3, while the aggregated metrics for
H2D scenarios (Night+Turn+Rain) are summarized in Ta-
ble S4.

B.3. Model Generalization
To verify the model generalization in the planning task,
we further evaluate model performance on the NAVSIM
(NV) benchmark using the predictive driver model score
(PDMS), which is based on five factors: no at-fault col-



Data Day Night Straight Turn Sunny Rainy

L2 Col L2 Col L2 Col L2 Col L2 Col L2 Col

nuScenes 0.59 0.50 1.40 2.71 0.59 0.55 1.32 1.80 0.64 0.63 1.15 0.81
nuScenes + GASS 0.55 0.42 1.00 2.53 0.50 0.49 1.21 1.89 0.52 0.58 0.99 0.79
nuScenes + HASS 0.54 0.47 0.81 1.56 0.55 0.52 0.64 1.01 0.56 0.64 0.56 0.32

Table S3. Performance comparison across various training data in each scenario.

Training Data
E2D H2D

L2 (m) Collision (%) L2 (m) Collision (%)

nuScenes 0.61 0.56 1.29 1.77
nuScenes + GASS 0.52 0.50 1.07 1.74
nuScenes + HASS 0.55 0.54 0.67 0.96

Table S4. Performance comparison in H2D and E2D scenarios.

Method Data NC↑ DAC↑ TTC↑ Comf.↑ EP↑ PDMS↑

Human - 100.0 100.0 100.0 99.9 87.5 94.8

Ego-MLP NV 93.0 77.3 83.6 100.0 62.8 65.6
UniAD NV 97.8 91.9 92.9 100.0 78.8 83.4
ParaDrive NV 97.9 92.4 93.0 99.8 79.3 84.0
RoboTron-Sim NV 98.0 93.0 93.3 99.8 79.9 84.6
RoboTron-Sim NV+HASS 98.2 93.6 93.8 99.9 81.1 85.6

Table S5. Performance on NAVSIM benchmark, †indicates that
RoboTron-Sim is trained without HASS.

lisions (NC), drivable area compliance (DAC), time-to-
collision (TTC), comfort (Comf.), and ego progress (EP).
Table S5 demonstrates that RoboTron-Sim delivers compa-
rable or superior performance compared to existing meth-
ods, with the integration of HASS achieving a PDMS of
85.6 and setting a new SOTA result on NV benchmark.

We also explore the robustness of the model on the VQA
task. The VQA data curated for HASS encompasses three
categories of questions: (1) Descriptive questions, such as
“What is the color of the traffic light ahead?”, are answered
directly using data generated by the simulator; (2) Hypo-
thetical questions, such as “If you turn right at this inter-
section, what would you encounter?”, are annotated us-
ing GPT-4o based on environment visuals and predefined
rules; (3) Reasoning questions, such as “Why are you slow-
ing down here?”, are generated by GPT-4o based on driv-
ing videos and trajectories to enhance the understanding of
vehicle behavior. We conduct separate validations on the
BDD-X and LingoQA datasets. As shown in Table S6,
with HASS integration, RoboTron-Sim achieves SOTA per-
formance on both benchmarks (e.g., improving METEOR
from 52.23 to 56.30 on BDD-X, and increasing CIDEr from
61.3 to 62.2 on LingoQA).

Method Data BLEU METEOR CIDEr

QwenVL BDD-X 25.89 46.54 19.91
LLaVA-1.5 BDD-X 25.97 45.08 21.62
Senna BDD-X 31.04 50.44 34.31
RoboTron-Sim BDD-X 32.54 52.23 37.19
RoboTron-Sim BDD-X+HASS 33.25 56.30 38.17

LLaVA LingoQA 12.5 18.5 57.0
Vicuna-7B LingoQA 10.1 15.2 51.0
BLIP-2 LingoQA 13.0 17.4 60.1
LingoQA LingoQA 15.0 18.6 59.5
RoboTron-Sim LingoQA 15.5 18.5 61.3
RoboTron-Sim LingoQA+HASS 16.6 19.0 62.2

Table S6. Performance on NAVSIM benchmark, †indicates that
RoboTron-Sim is trained without HASS.

B.4. Model Compatibility
We conduct a comparative analysis of three mod-
els: VAD [3] (representing classical end-to-end models),
LLaVA-OneVision [4] (as a representative multimodal large
language model), and our RoboTron-Sim, evaluating their
performance gains when augmenting real-world data with
simulated data. To systematically investigate model com-
patibility with simulated data augmentation, we conduct
cross-architecture evaluations on L2 distance. As evidenced
in Table S7, VAD exhibits fundamental compatibility lim-
itations, with marginal L2 reductions (↓2.5% E2D, ↓1.1%
H2D). Although MLLM demonstrates preliminary compat-
ibility, showing gradual improvements, the gains remain
constrained in the hard cases (↓9.0% E2D, ↓7.3% H2D).
In stark contrast, our RoboTron-Sim achieves breakthrough
enhancements (↓48.1% ) in H2D case while maintaining
stable performance in E2D case. This empowers knowl-
edge transfer from synthetic domains while preserving real-
world physical constraints, unlocking the model’s untapped
potential.

B.5. Deployment Costs
We compare the key deployment metrics for the models on
RTX-4090, as shown in Table S8. It shows that RoboTron-
Sim is applicable to smaller models like RoboTron-Sim-
0.5B (replacing the LLM from Qwen2-7B to Qwen1.5-
0.5B), achieving comparable performance to RoboTron-



Method Data L2 Distance (m)

E2D H2D

VAD nuScenes 0.78 0.88
nuScenes + HASS 0.76(↓ 2.5%) 0.87(↓ 1.1%)

MLLM nuScenes 1.00 1.23
nuScenes + HASS 0.91(↓ 9.0%) 1.14(↓ 7.3%)

RoboTron-Sim nuScenes 0.61 1.29
nuScenes + HASS 0.57(↓ 6.6%) 0.67(↓ 48.1%)

Table S7. L2 Distance performance gains of HASS across different models in E2D and H2D scenarios. To rigorously evaluate the model’s
inherent capability to comprehend dynamic environments without relying on ego-pose dependencies, we conducted ablation studies by
removing ego-pose inputs from both MLLM and RoboTron-Sim architectures.

Model Latency E2D H2D

Day Straight Sunny Night Turn Rainy

VAD 115.3ms 0.77 0.78 0.78 0.94 0.87 0.83
RoboTron-Sim-7B 612.8ms 0.54 0.55 0.56 0.81 0.64 0.56
RoboTron-Sim-0.5B 141.4ms 0.57 0.62 0.60 0.81 0.69 0.64

Table S8. Comparison of deployment costs.

Sim-7B and exhibiting deployment efficiency akin to tradi-
tional end-to-end model. This alignment of low deployment
costs and performance improvement makes RoboTron-Sim
practical for a wide range of real-world applications.

C. Visualization
C.1. In Hard-to-Drive(H2D) Scenarios
We conduct trajectory visualization comparisons among the
baseline method, RoboTron-Sim, and ground truth (GT) us-
ing representative long-tail cases from the nuScenes test set
(including turn, night, and similar challenging scenarios),
as shown in Figure S2.

C.2. In Long-Tail Scenarios
We conduct trajectory visualization comparisons among the
baseline method, RoboTron-Sim, and ground truth (GT) us-
ing representative long-tail cases from the nuScenes test set
(including lane invasion, temporary parking ahead, and sim-
ilar challenging scenarios), as shown in Figure S3.



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8

Figure S1. Visualization of HASS.



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8

Figure S2. Visual comparison of planning trajectories in H2D scenarios. Ground-truth trajectories are marked in red, baseline predictions
in yellow, and RoboTron-Sim’s predictions in green.



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Figure S3. Visual comparison of planning trajectories in Long-Tail scenarios. Ground-truth trajectories are marked in red, baseline
predictions in yellow, and RoboTron-Sim’s predictions in green.
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