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A. Grounding lenses

Lenses are designed with diverse characteristics, such as
curvature, surface shapes, and defining parameters, to meet
specific use cases. Compound lenses, widely adopted for
objectives such as achieving predefined fields of view, en-
hanced resolution, or improved color intensity, consist of
multiple surfaces with varying materials, coatings, and ge-
ometries. Commercially available lenses exhibit significant
variation in design and aberration profiles, each tailored
to distinct objectives. Common geometric profiles include
barrel, pincushion, fisheye, symmetric, and asymmetric de-
signs, as illustrated in Figure A2. Barrel and fisheye aberra-
tions cause image points to appear closer to the center com-
pared to a uniform reference grid, while pincushion aberra-
tions push points outward relative to the grid.

To model lens profiles accurately, optical systems rely
on ray tracing based on Snell’s Law and paraxial optics.
We show an example of a ray-traced optical system with
geometric aberration in Figure A3. This approach derives
spatially varying point spread functions (PSFs), relative il-
lumination maps, distortion fields, and incident ray profiles.
While spatially varying PSFs and illumination maps simu-
late perceptual aberrations on a scene image Is, applying
distortion fields alone offers a straightforward approach to
simulate geometric aberrations. These aberrations are typi-
cally quantified as:

D(%) =
dad − dref

dref
, (10)

where dad and dref denote the actual and reference dis-
tances from the image center, respectively, with dref de-
rived via monochromatic paraxial ray tracing.

To compute distorted coordinates from an aberration
profile, we perform bilinear interpolation on the distortion
field at each pixel’s location on the image plane.

B. Camera Uncertainty.

We present a visualization of aggregated results from our
model across 20 runs for the same input sequence in Fig-
ure A4. Predicted poses are color-coded according to their
respective input images. Sparse-view camera estimation
inherently involves non-determinism due to scale ambigu-
ity and symmetry. Despite these challenges, our method
generates reasonable camera sets for each sequence. The
predicted camera sets exhibit probabilistic variation, with
larger variances observed at frames that have reflection-
symmetric counterparts within the sequence.

Figure A1. Aberration correction compared to existing
method. SimFIR [7] is a recent framework for blind image undis-
tortion. Here we showcase the correction result from our approach
and SimFIR.

C. Further details on baseline finetuning

In our comparisons, we chose PoseDiffusion, RelPose, Rel-
Pose++, RayDiffusion, and RayRegression as the data-
driven baselines. The released checkpoints from these
methods are not initially trained with geometrically aber-
rated images, leading to limited generalization for our pro-
posed unified camera calibration task. We therefore finetune
each model on the CO3D dataset using the same geomet-
ric aberration simulation as our framework for fair evalua-
tions. For each of the model, we initialize the fine-tuning



Figure A2. Selected lens designs. The lens dataset contains more than 3000 patented lens designs. The lens designs can be roughly
categorized to resemble five aberration profiles. The geometric aberrations are converted into grid displacements, then applied to training
sequences for simulation.

Figure A3. Ray-traced lens. For each lens design in the simulation data, we trace rays towards the image plane to derive the aberration
representations. The reversed ray profiles originating from the image plane is to be estimated through our model. The pupil diagram and
displacement grid are visualized, describing the ray-traced geometric aberrations.

with their respective publically released checkpoint. The
dataloaders are modified to include the aberration simula-
tions, where a random aberration is selected from the lens
database, and then each image in the sequence goes through
the same aberration as if each video is captured using the
same camera model. We finetune for 10, 000 steps, and with
a learning rate of 0.00005 for all models such that the losses
are converged with the introduced camera modalities, with-
out drifting far from the initial convergence state.

D. Aria Experiments
The Aria datasets are captured using geometrically aber-
rated fisheye cameras. Here, we test our framework for its
reconstruction quality using the estimated camera pose and
aberration profile.

Gaussian Splatting has emerged as a common 3D recon-
struction framework, conditioned on properly undistorted
sequential images and camera poses. It works as a solid
testing ground to check the validity of our estimated cam-
eras both for their spatial orientations and the aberration
profiles. We attempted to reconstruct with 4 object-centric
videos from the Aria Digital Twin Catalog dataset. The
reconstruction results are shown in Figure A5, with corre-
sponding videos showcased in the supplementary website.

E. Undistortion comparisons
Previous approaches have explored blind image undistor-
tion from a single monocular image. While our method
performs better when applied to a sequence of images, it
can be adapted for single-image inference. We compare our



Figure A4. Uncertainty Plot. As a diffusion model, our framework makes prediction on the cameras in a probabilistic manner. The
predictions are stochastic, with each set of predicted camera sequence resembling a valid ray bundle set.

undistortion results against the recent SimFIR method on
the barrel, fisheye, and pincushion distortions, as illustrated
in Figure A1. SimFIR employs a tailored representation for
these distortions and predicts a vignetting mask for each im-
age. Our method generally achieves improved undistortion
quality, while the vignetting masks from SimFIR help miti-
gate visual artifacts near image boundaries.



Figure A5. Gaussian Splatting Reconstruction. Using the estimated ray bundles and distortion profiles, we process raw fisheye captures
from the Aria Digital Twin Catelog dataset and train a Gaussian Splatting model for reconstruction.
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