Hi-Gaussian: Hierarchical Gaussians under Normalized Spherical Projection for
Single-View 3D Reconstruction

Supplementary Material

1. More Theoretical Study

1.1. Normalized Spherical Projection

In Sec. 3.2 of the main text, we propose normalized spher-
ical projection, which introduces less spatial compression
than the un-normalized one. In other words, the curvature
of the upper edges in the images obtained from normalized
spherical projection is flatter, which is shown in Fig. 8 of
the main text. Now we provide a theoretical analysis of the
phenomenon described above.

The formula for un-normalized spherical projection is
given as follows:

(9] [radamten]

where [z, y]T is coordinates in the camera coordinate sys-
tem and r = /22 +y2+ 1. We consider 6 and ¢ as
functions of = and y, denoting them as 6 = hq(z,y)
and ¢ = hao(x,y) respectively. From Eqn. 1, we
can see that hy(z,y) = m — arctan (z7!) is solely
dependent on z, while ho(x,y) = arccos(—y/r) =

arccos (—y/\/av2 + 2+ 1) is dependent on both z and

y. Taking the partial derivative of hs(z,y) with respect to
T, we obtain

ahZ(xvy) — zy
Ox (22 4+ 92+ 1) a2 +y2+1
>0 if zy<0 2
=0 if zy=0

<0 if zy>0

Thus, for a given constant yo > 0, ha(z,yg) is strictly
monotonically increasing for z € (—o00,0), and strictly
monotonically decreasing for x € (0,+00). Similarly,
ha(x, —yg) is strictly monotonically decreasing for = €
(—00,0), and strictly monotonically increasing for z €
(0, +00). Moreover, since ha(z,y) = ha(—x,y), it is ev-
ident that ho(x,y) is an even function with respect to x.
Therefore, for any z € R, for any & € {2/ | |2/| < |z|},
we have ha(Z,y0) > ho(£z,y0) and ho(Z, —yo) <
ha(£z, —Yyo)-

Since normalization typically transforms x into a smaller
Z, our normalized spherical projection maps Cartesian co-
ordinates to a smaller range of spherical coordinates. This
results in the upper and lower edges of the images obtained
from normalized spherical projection appear relatively flat-
ter than the un-normalized one.

2. More Experiments

Additional quantitative and qualitative results are presented
to further elaborate on the superiority of our proposed
method. We start by showcasing a more comprehensive
comparison with other methods, then present a more de-
tailed ablation study.

2.1. Quantitative Comparison with other Methods

Cross-dataset Novel View Synthesis. We present quan-
titative results on cross-dataset generalization. Models are
trained on BundleFusion [3] and are tested on all 8 se-
quences in NeRF-LLFF [7] dataset. Table | shows that our
method achieves the best performance on most sequences
in NeRF-LLFF dataset.

Novel Depth Synthesis. To better showcase the depth es-
timation capability of our method, we conduct evaluation
on novel depth synthesis following the experimental setup
of SceneRF [2]. Our approach outperforms other methods
across all metrics, which is shown in Table 2 and Table 3.

Scene Reconstruction. We also evaluate mesh recon-
struction following SceneRF [2] for a fair comparison. As
demonstrated in Table 4, our method achieves the best re-
construction performance. It is worth noting that if we pro-
posed an improved approach for mesh reconstruction, we
could get better results.

Ablation Study. To further demonstrate the effectiveness
of our method, we conduct more ablation studies. We com-
pare the quantitative results of novel view synthesis at dif-
ferent distances from the input view. The results in Fig.
| show that our Normalized Spherical Projection module
and Hierarchical Gaussian Sampling strategy consistently
enhance the performance of our model, regardless of the
distance between the novel view and the input view.

2.2. Qualitative Comparison with Other Methods

Cross-dataset Novel View Synthesis. To better demon-
strate the generalization capability of our method, we con-
duct cross-dataset evaluations on novel view synthesis.
Models are trained on BundleFusion [3] and are tested on
NeRF-LLFF [7] dataset. The qualitative results in Fig. 2
indicate that our method renders the sharpest and clearest
images in cross-dataset generalization.



Fern Flower Fortress Horns
Methods PSNRt SSIMtT LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIMT LPIPS| | PSNRT SSIMt LPIPS|)
SceneRF 13.64 0.130 0.702 13.31 0.263 0.584 15.46 0.290 0.636 14.55 0.222 0.650
Splatter Image 11.89 0.133 0.610 12.36 0.107 0.523 8.95 0.218 0.565 14.48 0.266 0.469
Ours 16.93 0.439 0.359 14.01 0.167 0.468 17.59 0.302 0.318 15.84 0.398 0.379
Leaves Orchids Room Trex
Methods PSNRT SSIMt LPIPS] | PSNRT SSIMt LPIPS] | PSNRtT SSIMt LPIPS] | PSNRT SSIMt LPIPS])
SceneRF 13.77 0.161 0.548 11.31 0.128 0.716 12.74 0.286 0.743 10.65 0.093 0.757
Splatter Image 12.66 0.120 0.488 9.88 0.067 0.615 9.62 0.207 0.648 9.22 0.074 0.638
Ours 13.00 0.158 0.443 11.76 0.145 0.507 16.26 0.454 0.328 16.91 0.453 0.274

Table 1. Quantitative evaluations on cross-dataset generalization from BundleFusion to NeRF-LLFF dataset.

SemanticKITTI

Methods AbsRel] SqRel] RMSE| RMSE log| 61 T oo T 63 T

PixelNeRF [9] 0.2364 2.080 6.449 0.3354 65.81 8543  92.90
MINE [5] 0.2248 1.787 6.343 0.3283 65.87  85.52  93.30
VisionNeRF [6] 0.2054 1.490 5.841 0.3073 69.11  88.28  94.37
SceneRF [2] 0.1681 1.291 5.781 0.2851 75.07  89.09  94.50
SplatterImage [8] 0.2519 2.127 7.282 0.4205 58.41 79.30  89.02
Ours 0.1165 0.812 4.702 0.2397 80.99 90.02 94.67

Table 2. Novel depth synthesis on SemanticKITTI datasets.

Mesh Visualization of Scene Reconstruction. To of- ference on Computer Vision, pages 9387-9398, 2023. 1, 2,

fer a more intuitive representation of scene reconstruc-
tion, we display 3D meshes on the validation set of Se-
manticKITTI [1, 4] and BundleFusion [3]. These meshes
are produced from the scene TSDF, which is obtained
through the conversion of rendered images and depths. Fig.
4 and Fig. 5 demonstrate that our method reconstructs the
clearest and sharpest meshes.

Ablation study. Due to the limitation of the main text’s
length, we have only presented the qualitative results of ab-
lation study on SemanticKITTI. Therefore, the results for
BundleFusion are provided here, as shown in Fig. 3. With-
out Normalized Spherical Projection, our model fails to re-
construct outside the input FOV, leading to ghosting arti-
facts. Without Hierarchical Gaussian Sampling, there will
be ripple artifacts and holes in the rendered novel views.
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BundleFusion

Methods AbsRel] SqRel] RMSE| RMSE log| 61 T oo T o3 T

PixelNeRF [9] 0.6029 2.312 1.750 0.5904 46.34 72.38 83.89
MINE [5] 0.1839 0.098 0.386 0.2386 65.53  91.78  98.21
VisionNeRF [6] 0.5958 2.468 1.783 0.5586 55.47  79.29  86.68
SceneRF [2] 0.1766 0.094 0.368 0.2100 72.71  94.89  99.23
SplatterImage [8] 0.2407 0.142 0.454 0.2710 57.06  89.00  97.99
Ours ‘ 0.0792 0.041 0.225 0.1101 95.28 99.30 99.75

Table 3. Novel depth synthesis on BundleFusion datasets.

SemanticKITTI BundleFusion
Methods IoUT  Prec.t Rec.t IoUT  Prec.f Rec.?

SceneRF [2] 13.84 17.28  40.96 | 20.16 25.82  47.92

Splatter Image [8] | 10.30 11.30 53.93 13.89 22.22 27.04

15.56 17.39 59.72 ‘ 40.42 4891 69.96

Ours

Table 4. Reconstruction evaluations on SemanticKITTI and BundleFusion datasets. We outperform all other methods across all metrics.
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[9] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
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Figure 1. Performances at varying input view distances on SemanticKITTI (the first row) and BundleFusion (the second row) for ablation
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Figure 2. Qualitative evaluations on cross-dataset generalization from BundleFusion to NeRF-LLFF dataset.
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Figure 3. Ablations on BundleFusion (val). Without Normalized Spherical Projection, our model fails to reconstruct outside the input FOV,
leading to ghosting artifacts. Without Hierarchical Gaussian Sampling, there will be ripple artifacts and holes in the rendered novel views.
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Figure 4. 3D meshes on SemanticKITTI (val.).
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Figure 5. 3D meshes on BundleFusion (val.).
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