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Figure 6. Visualization of semantic discrete codes. Rectangular
boxes of the same color indicate that the corresponding semantic
ID of these patches is the same. It can be observed that semantic
ID can represent a semantic concept.

Visualization of Semantic Code Figure 6 shows the visu-
alization of semantic encoding. We convert the image into
discrete codes using the proposed SDE tokenizer, group the
patches of the image according to their codes, and mark
them with rectangular boxes. The left image indicates that
the two IDs represent the cat’s ears and the area near its
nose, respectively. The right image visualizes the code that
represents strawberries. The illustration demonstrates that
the discrete codes extracted by the SDE tokenizer contain
high-level semantic information, thus significantly enhanc-
ing the understanding capability (as shown in Table 6).

Image Reconstruction Figure 7 shows the comparison of
the image reconstruction results with other semantic tok-
enizers, where the first column is the original image. We
observe that methods like SEED [3] and LaVIT [6] can only
retain basic semantic information, but show significant dif-
ferences in color, number of objects, and background com-
pared to the original image. Emu2 [14] failed to accurately
restore some details (the rectangular box in the figure). The
proposed tokenizer explicitly integrates high-level seman-
tic information and low-level information during the dis-
cretization process, so the reconstructed results perform bet-
ter in preserving both the major objects and the details.

Visualization of VQA Figure 8 illustrates MUSE-VL’s
ability to tackle visual question-answering tasks. The model

Figure 7. Comparison of image reconstruction results with differ-
ent methods [3, 6, 14]. The original image is in the first column,
and SDE is the proposed tokenizer.

Question: What animals are in the picture, and what are
their specific locations in the picture?

MUSE-VL (Ours): There is a white rabbit on the right side
of the image, and a brown and black turtle on the left side
of the image.

 SEEDLLaMA: There is a gray and white mouse on the
left and a brown and white rabbit on the right.

Chameleon: The animals in the picture are rabbits. The rabbit in the foreground is located on the
left side of the picture, and the rabbit in the background is located on the right side of the picture.

Question: What is in front of the laptop? What is to the left
of the laptop? Please explain in detail.

Muse-VL (Ours): In front of the laptop, there is a plate with
a muffin and bananas. To the left of the laptop, there is a
smartphone. The arrangement suggests a casual and
relaxed setting, possibly during a break or a work session.

SEEDLLaMA: A banana is in front of the laptop, and a cup
of coffee is to the left of the laptop.

Chameleon: The laptop is on a desk in a home office. In front of the laptop is a cup of coffee, a
banana, and a laptop mouse. To the left of the laptop is a laptop keyboard, a mouse, a book, a laptop
charger, and a laptop screen protector.

Figure 8. Comparison of results on the Visual Question Answering
(VQA) task. The model is required to answer the user’s questions
based on the input image. The inaccurate parts of the response are
highlighted in red.

receives an image as its initial input, after which the user
poses questions regarding the image. The results show that
the Chameleon [15] and SEEDLLaMA [3] models make
obvious errors in animal recognition and spatial localiza-
tion. Additionally, Chameleon describes objects that were
not present in the image, indicating hallucination issues.
Compared with them, the results show the proposed model
can accurately answer questions based on image informa-
tion, demonstrating that the model has effective spatial lo-
calization and instruction-following capabilities.



Type Method Overall Single Obj. Two Obj. Counting Colors Position Color Attri.
DALL-E 2 [11] 0.52 0.94 0.66 0.49 0.77 0.1 0.19
SDv1.5[12] 0.43 0.97 0.38 0.35 0.76 0.04 0.06
SDv2.1 [12] 0.50 0.98 0.51 0.44 0.85 0.07 0.17

Gen. Only SDXL [10] 0.55 0.98 0.74 0.39 0.85 0.15 0.23
PixArt-alpha [2] 0.48 0.98 0.5 0.44 0.8 0.08 0.07
DALL-E 3 [1] 0.67 t 0.96 0.87 0.47 0.83 0.43 0.45
LlamaGen [13] 0.32 0.71 0.34 0.21 0.58 0.07 0.04
Chameleon [15] 0.39 - - - - - -
LWM [9] 0.47 0.93 0.41 0.46 0.79 0.09 0.15

Und. and Gen. SEED-X [4] 0.49 0.97 0.58 0.26 0.8 0.19 0.14
Show-o [20] 0.53 0.95 0.52 0.49 0.82 0.11 0.28
Ours (7B) 0.53 0.99 0.65 0.44 0.73 0.18 0.17
Ours (7B) 0.57 t 0.98 0.64 0.52 0.72 0.25 0.31

Table 8. Evaluation of text-to-image generation on the GenEval [5]. { result is with rewriting.

Table 9. Evaluation on TextVQA benchmark.

Method Resolution TextVQA
LLAVA 1.5 [8] 336 58.2
Janus [18] 384 50.7
VILA-U [19] 256 48.3
VILA-U [19] 384 60.8
EMU3 [17] 1024 64.7
SynerGen-VL [7] Dynamic 67.5
MUSE-VL 256 52.8
MUSE-VL 384 61.3

Benchmarks of high-resolution benchmarks Table 9
presents the results of the commonly used TextVQA bench-
mark. This benchmark is highly relevant to OCR tasks and
therefore requires high-resolution image understanding ca-
pabilities. It is worth noting that our current model does not
yet include the training process of high-resolution images.
We plan to support high-resolution input in future work.

B. Visual Generation Results

Table 8 shows the quantitative results of the text-to-image
in GenEval [5] benchmark and compares them with other
state-of-the-art generation models. We followed DALL-E 3
[1] to rewrite the prompts, making them more aligned with
the dense captions in the training data. The results show
that our model exhibits better performance than other uni-
fied models such as Chameleon [15] and SEED-X [4]. And
it achieves performance close to the diffusion models. This
indicates that our model has a strong image-text alignment
capability.

C. Limitation and Future Work

Due to the limitations in the scale of training data and the
resolution of generated images, our model has not surpassed
the SOTA diffusion models in visual generation. In the fu-
ture, we plan to further enhance the generation quality by
expanding the scale of the training dataset for visual gener-
ation and using a more powerful image encoder [16]. Fur-
thermore, exploring the native integration of AR and Diffu-
sion to further enhance the quality of image generation and
instruction following is both challenging and promising.

In this work, extensive experiments and evaluations have
been conducted on multimodal understanding and text-to-
image tasks, demonstrating that our model can effectively
unify the modeling of textual and visual data. Moreover,
the architecture of our model supports arbitrary sequences
of images and text. The next step is to further expand the ca-
pabilities of MUSE-VL by incorporating interleaved image-
text data and image-editing data during training.
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