MVGBench: a Comprehensive Benchmark for Multi-view Generation Models

Supplementary Material

In this supplementary, we first discuss the implementa-
tion details, including our MVGBench metrics (Sec. 6.1)
and evaluation experiment setups (Sec. 6.2). We then show
additional evaluation result and analysis in Sec. 7, and con-
clude with discussion of limitations.

6. Implementation Details

We discuss the details of our metrics and experiment se-
tups. Our benchmark suite and pre-trained models will be
publicly released.

6.1. MVGBench Metric Implementation

View sets split. For 3D consistency metric, we split the
generated multi-view images into two subsets and fit 3DGS
separately to them. We allow small overlap when the total
number of generated views is small. There are three differ-
ent number of output views for all the methods we evalu-
ated: 16, 18, 21, see Tab. 5. The view indices for the two
subsets are: 1). Output 16 views: [0, 2,4, 5,6, 8,9, 10, 11,
12,14], (1, 3, 5,6, 7,9, 11, 12, 13, 14, 15]. 2). Output 18
views: [0, 1, 2, 4, 6, 8, 10, 12, 14, 16], [0, 1,2, 3,5, 7, 9,
11, 13, 15, 17]. 3). Output 21 views: the first (input) view
is excluded and rest is divided into two non-overlap views,
namely [0, 2, 4, 6, 8, 10, 12, 14,16, 18],[ 1,3, 5,7, 9, 11,
13, 15,17, 19].

3DGS optimization. We use the original version of
3DGS [27] for optimization. We explored more advanced
version of 3DGS but found that they are either less accurate
for object level multi-views [19, 41, 78] or the runtime is
too long [79]. We hence stick to the original 3DGS version
and randomly sample 100k points from unit cube [-1, 1] to
initialize the Gaussians and optimize for 10k steps. White
background is used during optimization as all methods gen-
erate images with white background.

Test view rendering. We render the optimized 3DGSs
into RGB and depth images to compute the depth, cPSNR,
¢SSIM, cLPIPS metrics. To produce comparable numbers,
the test views have to be the same for two 3DGSs and across
all methods, for the same test object. The test views should
be diverse so that is does not favor output elevation angles
specific to some methods while it should also be close to
the views used to fit 3DGS, otherwise the calculated scores
are dominated by 3DGS fitting error instead of multi-view
inconsistency. To this end, we use two setups to choose
the views for rendering: a). Random views sampled from a

fixed range, and b). Fixed views that differ 15 elevation de-
grees from generated multi-views. For both setup K = 16
views are used for rendering, and each object might have
different test views but the same views are always used
across methods for fair comparison.

Random test views are used for best setup performance,
robustness w.r.t to lighting and azimuth conditions. As ex-
isting methods generate multi-view images with elevation
angle ranging from 0 to 30 degrees (Tab. 5), we uniformly
sample elevation from range [-15, 45], azimuth from [0,
360], and camera distance from [1.5, 1.9]. The field of view
(Fov) is fixed at 42 degree such that it does not favor any of
the methods evaluated.

Fixed test views are used for generalization to real images
and robustness w.r.t to different elevation degrees. In these
setups, the output elevation differ a lot and it is difficult to
define a common range where 3DGS fitting also works well
and we can sample elevation from. To this end, we take 8
views with equal azimuth distance from 8.5 to 360 degree
and the elevation is 15 degree higher than the elevation of
generated multi-views. The other 8 views have the same
azimuth angles but the elevation is 15 degree lower than
the output multi-view elevation. The fov and camera dis-
tance are fixed to 42 degree and 3.2m. We choose these az-
imuth, fov, and distance to not favor any methods. Note that
this will lead to consistency scores that are not comparable
across different output elevations, which address next.

Normalization of the consistency scores. The exact
scores of our consistency metrics depend on the views used
to render test images and the raw numbers are not directly
comparable if the views are different. This is the case
when we want to evaluate the robustness of a method w.r.t
to different elevation angles (see discussion above). We
hence propose to normalize the raw numbers using the up-
per bound scores obtained from ground truth multi-view im-
ages. Let eg, emyg be the raw consistency score defined in
Sec. 3.1 using MVG and GT images of the same camera
views. The normalized error epyg o is computed as:
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here max epy, is the maximum error for this metric among

our evaluated methods. This yields a score between 0 and 1

and it is always the higher the better. This normalization is

also used to visualize the bottom plots in Fig. 1.




Prompt templates for VLM based metrics. We pro-
pose four metrics based on the pretrained 73B InternVL2.5
VLM [8]. The same model is used to obtain the reference
attributes (Sec. 3.2) via three-round prompts given multi-
view images. The three sequential prompts are: 1). “Here
are images of a daily object, what is the appearance style
of this object? Ignore the background, focus on the appear-
ance, style and design instead of describing the object type,
return the appearance style only and in less than 5 words.”,
2). “Which object it is? Just return the class name, do not
repeat question. Use daily used common words. If there are
multiple possibilities, return like this: classname 1 or class-
name?2 or classname3...”, 3). “What is the main color(s) of
this object? simply answer the color(s), summarize to less
than 4 colors.”

We then use the answers from these prompts as the refer-
ence attributes and evaluate the semantic consistency using
the following templates: 1). class: “Is [obj cls| presented
in this image? just answer yes or no.” 2). color: “Does
the object (possibly [obj cls]) shown in this image have the
color(s): [color]? just answer yes or no. 3). “Is the ap-
pearance style of the object (possibly [obj cls]): [style]? just
answer yes or no.”

We also use the same model to asses the image qual-
ity (IQ-vlm) which we find align well with human percep-
tion. The prompt template is: “Is this image an overall
high-quality image with good overall structure, good visual
quality, nice color harmony, clear object and free of strange
artifacts and distortions? just answer yes or no.”.

Runtime performance. The most compute expensive
steps in our evaluation pipeline are 3DGS optimization and
VLM assessment, which takes around 76s (two subsets) and
12s per input image to finish on L40s GPU. In total it takes
around 2.7 hours to evaluate 100 objects which is still rea-
sonable. More advanced techniques such as better 3DGS
initialization [9] or VLM inference via API call could be
adopted to speed up evaluation. We leave these for future
works.

6.2. Experiment Setups

User study. We conduct user studies to verify our oFID
score and VLM based metrics, each with 400 questions an-
swered by 10 users. As 400 questions are too many for one
single user study survey, we divide it into 8 smaller surveys,
each with 50 questions. We then recruit 10 users to finish
each survey and no overlap is allowed for different surveys.
Hence in total we have 80 different users to participate one
user study. This ensures sufficient diversity and statistically
meaningful results. We show example questions from our
user studies in Fig. 7 and Fig. 8.

[Q5] Please look at the image and answer these questions: *
- *Quality*: Is this image an overall high-quality image with good overall structure,
good visual quality, nice color harmony, clear object and free of strange artifacts
and distortions?

- *Object class*: Does this image show this object type: [Mug]?

- *Color*: Does the object shown in this image have the one of the colors: [White,
blue, yellow, brown]? Select yes as long as one of the color is clearly visible and
occupies no less than 10% of the object.

- *Appearance style*: Is the appreance style of the object: [Rustic, colorful, simple
design]?

Yes No
Good quality? O O
Object type: Mug? O O
Color: one of [White, blue,
yellow, brown] clearly visible? O O
Style: Rustic, colorful, simple O O

design?

Figure 7. Example question from our user study on the alignment
between our VLM based metrics and human preference.

Evaluation setup for existing methods. We show the in-
put and output setups for all the methods we evaluate in the
best-setup performance experiment in Tab. 5. We use am-
bience light of 1.0 and zero azimuth angle for this setup.
The rendering setup is the same for robustness evaluation
except for the attribute we want to evaluate (elevation, light
intensity, and azimuth angle). For generalization to real
images, we cannot control the rendering anymore hence
we use the same input image crop for different methods,
which has 0.2 margin from the object bounding box to im-
age boarder. The number of output views of each method
remain the same as in best-setup evaluation.

MYVG design choice experiments. We use the 150k kiui
objects filtered by LGM [52] as our training data. Follow-
ing same camera parameters in SV3D [54], we render each
object from 84 views and randomly pick 21 views at train-
ing time. We adopt the dynamic orbit rendering from SV3D
which adds perturbations of azimuth and elevation angles to
the equally distributed static orbit. We pre-compute the la-



[Q1]. Compare the generated images of two methods, which method has better ~ *
consistency to image, or better image quality?
Criteria to consider for each aspect:

+ Consistency: consider the object type, colour, overall appearance of the generated
images, which method look more similar to the input image?

« Image quality: consider the generated images alone, which method has better
quality in overall structure, visual quality, colour harmony, object clearness, free of
artifacts or distortions?
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Top Bottom
Consistency with input
image O O
Image quality O O

Figure 8. Example question from our user study on the alignment
between our oFID score and human preference.

tent features of CLIP [44], SVD [46], DINOV2 [42] and
ConvNextV2 [59] to speed up training. We use batch size
of 64, learning rate of 2e-5 for all the experiments. The to-
tal training steps is 26k for camera embedding experiments
and 50k for all other experiments.

7. Additional Results and Analysis
Validation of VLM based metrics.

Full evaluation results. We show all scores of our MVG-
Bench from all evaluated methods on four datasets in Tab. 6
(GSO [12]), Tab. 7 (Omni3D [63]), Tab. 8 (CO3D [45]),
and Tab. 9 (MVImgnet [77]). It can be seen that our method
achieves the best overall 3D consistency and on par perfor-
mance on image quality and semantic consistency.

Methods struggle with fine-grained details. We rank the
input images based on the 3D consistency score (cPSNR)

1Q-vlm (Pearson r=0.931, p=9.12e-05)
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Figure 9. Validating vision language model (VLM) based met-
rics. Our VLM metrics strongly correlate with human perception
(Pearson coefficient confidence interval: 0.95).

Methods Fov Elev. Dist.(m)#Out views
SyncDreamer based

[17.21, 38, 74, 82] 49.1 30 1.5 16
V3D [9] 60 0 2.0 18
SV3D [54], ours 33.8 12,5 2.35 21
Zero123 based 91 0 1.85 71

[2, 11, 28, 30, 76]

Table 5. The input rendering (Fov, camera elevation degree and
distance) and number of output views of each method for the best
performance evaluation.

from different methods and visualize the 10 common in-
puts that have the worst scores in Fig. 10. It can be seen
that the common challenging images are the objects with
complex and fine-grained geometric structures and textures
such as bicycle, flowers, text boxes. Diving further into this
problem, we find that the autoencoder used in all MVGs
already destroys the high frequency structures after one sin-
gle pass through the autoencoder. We show two examples
in Fig. 11. To further understand the effect on 3D consis-
tency, we send the ground truth multi-view images of 30
GSO objects [28] through the autoencoder of SV3D [54].
The consistency scores before and after the autoencoder are
(CD/ depth / cPSNR / ¢SSIM / cLPIPS): 2.58 /9.82/31.94
/0.94 7 0.03 (before), 2.69 / 9.05 7/ 30.29 / 0.92 / 0.04 (af-
ter). It can be clearly seen that the 3D texture consistency
scores already degrade after single feedforward through the
autoencoder. Interestingly, the depth error, sensitive to in-
consistency in edges, decreases which indicates the images
are indeed smoother with high-frequency details lost.

8. Limitations and Future Work

We present the first comprehensive benchmark to evalu-
ate 3D consistency of object multi-view generation mod-
els. Despite robust to various settings, there are still limita-
tions of our benchmark. First, our method cannot evaluate
methods that generate very few views (<10) as the 3DGS



Geometry consistency Texture consistency Image quality Semantic consistency

Method CD | depth | PSNR+ SSIM{ LPIPS| | FID| IQ-wvim+ | classt colort style t
Ours 3.15 14.20 28.93 0.90 0.05 20.46 0.82 0.86 0.94 0.93
SyncDreamer[38] | 2.99 17.29 26.83 0.87 0.07 22.72 0.53 0.84 0.96 0.94
SV3D-tune 3.34 16.49 27.71 0.88 0.06 19.06 0.80 0.89 0.95 0.96
SV3D[54] 3.47 19.65 26.75 0.86 0.07 21.31 0.77 0.85 0.92 0.93
Hi3D[74] 3.29 21.69 24.60 0.84 0.09 18.68 0.87 0.89 0.95 0.95
V3D[9] 4.25 28.08 23.84 0.81 0.12 21.20 0.77 0.86 0.96 0.91
EscherNet[28] 4.34 20.61 23.89 0.79 0.11 24.71 0.57 0.77 0.90 0.88
MVDFusion[17] 477 38.74 21.44 0.76 0.15 25.60 0.48 0.88 0.94 0.94
ViewFusion[76] 5.33 40.20 22.34 0.80 0.14 22.03 0.63 0.82 0.92 0.92
EpiDiff[21] 5.77 50.65 20.28 0.72 0.19 16.53 0.77 0.89 0.97 0.94
Free3D[82] 6.03 44.27 20.26 0.77 0.18 27.30 0.73 0.78 0.82 0.90
Vivid123[30] 7.57 43.97 21.74 0.81 0.18 38.91 0.63 0.66 0.78 0.80
Zero123[2] 10.99 63.72 17.37 0.67 0.29 21.35 0.73 0.82 0.90 0.93
Zero123-x1[11] 15.40 68.13 17.10 0.66 0.30 20.72 0.72 0.83 091 0.94
Table 6. Best setup performance on the GSO [12] dataset.
Method Geometry consistency Texture consistency Image quality Semantic consistency
CDh | depth | PSNR{1 SSIM1 LPIPS| | oFID] IQ-vim? | class?T colorf style
Ours 2.98 11.63 29.09 0.92 0.04 15.47 0.54 0.77 0.85 0.88
SyncDreamer[38] | 2.93 13.60 27.24 0.89 0.06 5.94 0.24 0.64 0.85 0.79
Hi3D[74] 3.13 17.63 25.25 0.88 0.08 16.07 0.55 0.74 0.87 0.84
SV3D-tune 3.16 14.11 27.69 0.91 0.05 15.00 0.51 0.79 0.88 0.89
SV3D[54] 3.46 19.46 26.02 0.88 0.07 17.60 0.50 0.69 0.85 0.85
V3D [9] 451 23.62 23.01 0.85 0.12 17.70 0.46 0.70 0.84 0.85
EscherNet[28] 5.01 23.25 21.87 0.77 0.14 22.39 0.41 0.60 0.80 0.79
MYVDFusion[17] 5.67 47.96 19.04 0.76 0.19 26.89 0.21 0.69 0.83 0.82
EpiDiff[21] 6.78 57.31 18.37 0.73 0.21 14.61 0.52 0.79 0.89 0.88
ViewFusion[76] 7.88 54.32 17.90 0.73 0.24 16.96 0.44 0.68 0.85 0.87
Free3D[82] 8.02 52.58 16.97 0.72 0.25 23.78 0.50 0.61 0.77 0.79
Zero123-x1[11] 13.67 70.17 13.64 0.60 0.39 17.86 0.51 0.67 0.84 0.86
Zerol123[2] 14.17 70.32 14.15 0.62 0.38 17.62 0.51 0.69 0.84 0.88
Vivid123[30] 14.31 56.07 17.80 0.76 0.26 27.98 0.50 0.56 0.74 0.74
Table 7. Best setup performance on the Omni3D [63] dataset.
Method Geometry consistency Texture consistency Image quality Semantic consistency
CD | depth | PSNR1+ SSIMt LPIPS| | FID| IQ-vim? | classt color? style t
Ours 3.10 16.94 25.99 0.88 0.06 23.40 0.29 0.80 0.86 0.82
SyncDreamer[38] | 3.04 13.48 25.30 0.88 0.06 30.96 0.12 0.69 0.83 0.70
SV3D-tune 343 19.99 24.32 0.85 0.08 21.71 0.26 0.82 0.84 0.83
SV3D[54] 3.48 25.80 23.72 0.87 0.13 24.19 0.29 0.76 0.87 0.78
EscherNet[28] 5.14 26.46 20.34 0.71 0.14 28.54 0.26 0.71 0.79 0.72
Hi3D[74] 5.60 31.09 20.92 0.81 0.12 25.51 0.35 0.75 0.82 0.75
MVDFusion[17] 577 4743 17.50 0.71 0.20 27.16 0.19 0.75 0.82 0.78
EpiDiff[21] 7.71 58.58 15.66 0.64 0.26 20.58 0.31 0.84 0.86 0.82
ViewFusion[76] 7.75 49.76 16.49 0.77 0.29 22.10 0.33 0.82 0.85 0.82
Vivid123[30] 9.81 56.38 15.31 0.69 0.29 35.89 0.49 0.70 0.76 0.72
V3DI[9] 10.45 58.71 16.39 0.71 0.26 28.76 0.32 0.72 0.85 0.77
Free3D[82] 11.15 60.95 14.42 0.76 0.33 32.84 0.32 0.71 0.75 0.75
Zero123[2] 12.06 64.74 13.16 0.55 0.38 21.22 0.38 0.84 0.87 0.86
Zero123-x1[11] 12.58 66.99 12.97 0.54 0.38 20.83 0.34 0.85 0.86 0.84

Table 8. Evaluation results on the CO3D[45] dataset with manually selected front view and annotated elevation angles.

fitting is very inaccurate and fitting error instead of multi- view inconsistency dominates our consistency scores. One



Method Geometry consistency Texture consistency Image quality Semantic consistency
CD | depth | PSNR1+ SSIMt LPIPS| | FID] IQ-vim? | classt color? style t

Ours 3.04 17.58 26.43 0.88 0.06 22.10 0.37 0.74 0.88 0.84
SyncDreamer[38] | 2.87 15.35 25.44 0.88 0.06 30.64 0.17 0.59 0.84 0.79
SV3D-tune 3.37 21.94 24.97 0.85 0.08 22.04 0.34 0.72 0.88 0.82
SV3D[54] 3.39 26.17 23.99 0.83 0.09 22.07 0.33 0.71 0.87 0.79
EscherNet[28] 5.35 29.55 20.31 0.72 0.15 25.78 0.32 0.66 0.82 0.78
Hi3D[74] 6.24 33.72 21.42 0.81 0.12 25.77 0.41 0.63 0.83 0.78
MVDFusion[17] 6.29 50.54 17.27 0.70 0.22 28.45 0.26 0.62 0.80 0.78
EpiDiff[21] 8.05 61.91 15.85 0.64 0.27 20.21 0.42 0.74 0.86 0.84
ViewFusion[76] 8.26 54.27 16.14 0.63 0.28 21.77 0.39 0.72 0.84 0.84
Free3D[82] 10.64 60.00 14.77 0.65 0.33 33.58 0.38 0.60 0.70 0.75
Vivid123[30] 10.67 58.06 15.81 0.69 0.30 35.84 0.56 0.56 0.68 0.75
V3D [9] 10.74 65.40 16.30 0.71 0.26 27.89 0.40 0.65 0.79 0.79
Zero123-x1[11] 12.04 67.08 13.45 0.55 0.38 20.51 0.41 0.74 0.85 0.87
Zerol23[2] 12.11 66.76 13.61 0.56 0.38 20.83 0.42 0.74 0.85 0.86

Table 9. Evaluation results on the MVImgNet [77] dataset with manually selected front view and annotated elevation angles.
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Figure 10. The most challenging test images from GSO[12],
Omni3D[63], MVImgnet[77] and CO3D[45]. Methods produce
the most 3D inconsistent images for these inputs due to their com-
plex geometric structure or high frequency details.
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Figure 11. Degradation of image quality after passing through the
autoencoder of SV3D [54]. Clearly the high frequency details are
destroyed by the autoencoder.

possible solution is to replace 3DGS fitting with pre-trained
models that can take few-views as input and directly regress
3DGS, such as LGM [52]. This however requires the model
to be robust to diverse camera setups which is still an ongo-

ing research. Second, we curated four datasets which cov-
ers mainly daily objects, and most of them are indoor. It
would be interesting to also consider outdoor objects such
as buildings, statues or complex compositional shapes such
as human-human or human-object interactions. Last but not
least, we evaluate the robustness w.r.t lighting, elevation and
azimuth angles. Real life objects have much more attributes
that can affect the performance, such as the material, shad-
ing condition, specific object categories. One can do more
comprehensive analysis could be done using our proposed
metrics to understand the progress of SOTA methods. We
leave these for future works.



