
MaskSAM: Auto-prompt SAM with Mask Classification
for Volumetric Medical Image Segmentation

Supplementary Material

6. Prompts from Ground Truth.
To fairly compare and demonstrate the effectiveness of our
model, we fine-tune it using accurate prompts generated
from ground truth (GT) as input. In this version of the
model, we remove the prompt generator and instead use
the accurate prompts as input for the prompt encoder, while
keeping the rest of the components unchanged from our
MaskSAM model, including the designed adapters. Using
accurate prompts from GT, our model achieves excellent
performance, with a 94.70% Dice and 94.30% on Synapse
and ACDC datasets, which outperform nnUNet by 8.5%
and 2.7%, respectively. Furthermore, these results signif-
icantly surpass all existing SAM-based methods. These
findings demonstrate that our designed adapters can effec-
tively adapt SAM for medical image segmentation when
provided with accurate prompts. Additionally, they show
that, under the same conditions with accurate prompts, our
model achieves near-perfect performance, significantly out-
performing other SAM-based methods.

7. Implementation Details
Our models are based on the codebase of nnUNet for the
preprocessing and postprocessing. For the preprocessing,
we utilize some data augmentations such as rotation, scal-
ing, Gaussian noise, Gaussian blur, brightness, and contrast
adjustment, simulation of low resolution, gamma augmen-
tation, and mirroring. During training, we set the initial
learning rate to 0.001 and employ a “poly” decay strategy
in Eq. (2).

lr(e) = init lr × (1− e

MAX EPOCH
)0.9, (2)

where e means the number of epochs, MAX EPOCH means
the maximum number of epochs, set it to 500, 1000, and
1000 for ACDC, AMOS2022, and Synapse dataset, respec-
tively, and each epoch includes 250 iterations. For the post-
processing, we crop the whole image into several patches
with a half-overlap. For each patch, our model infers 8
times by different three axes (i.e. axial, sagittal, and coronal
planes) and then averages all outputs to get the final predic-
tions. All experiments are conducted using NVIDIA RTX
A6000 GPUs with 48GB memory.

8. Theoretical Comparisons
The main contributions of our MaskSAM different from
the existing SAM-based models are i) automatic prompt,

AMOS22 [29] Synapse [31] ACDC [3]

Median Image Shape 104× 512× 512 128× 512× 512 9× 256× 216
Patch Sizes 9× 512× 512 26× 256× 256 4× 256× 256
SAM Model Types vit h vit h vit b
# Tunable Params 66M 65M 21M

Table 5. Configurations for different datasets.

# Params (M) nnUNet MedSAM SAMed Med-SA

Tunable Params 29M 91M 19M 13M
Total Params 29M 91M 636M+19M 636M+13M
# Params (M) SAM3D 3DSAM-Adapter AutoProSAM MaskSAM (ours)

Tunable Params 2M 26M 27M 21M
Total Params 91M+2M 91M+26M 91M+27M 91M+21M

Table 6. Comparison of tunable and total parameters on ACDC.

ii) the classifier to generate semantic labels for each mask,
and iii) remain all parameters of the original SAM for zero-
shot capabilities. There are several categories of the exist-
ing SAM-based models. The first category does not mod-
ify SAM, such as MedSAM and Polyp-SAM. These models
need manual prompts, such as points or boxes, and cannot
classify masks into semantic labels. The second category
uses parameter-efficient transfer learning, such as Adapters,
into SAM. The popular model, Med-SA, uses the GT to
generate prompts during inference, which do not have any
practical clinical values. It also includes the non-automatic
models of the 3DSAM-Adapter and MA-SAM. These mod-
els do not handle the requirements of extra prompts. The
third category is that cannot classify masks into semantic la-
bels, such as DeSAM, Med-SA, and MA-SAM. Since SAM
only predicts binary masks, these models do not address
the lack of classifiers. The fourth category is abandoning
the components of SAM, such as Mask Decoder, to handle
the inability to classify semantic labels, such as 3DSAM-
Adapter. This way inevitably destroys the consistency and
zero-shot capabilities of SAM. These models only use the
pre-trained ViT encoder, which is not the contribution of
SAM.

9. Configurations and Parameters
In Table 5, since our method is built upon the large-
scale Segment Anything Model (SAM), it incurs substan-
tial memory overhead during training. Furthermore, SAM
is originally designed for 2D natural images, making it less
straightforward to directly apply to 3D medical images,
where the additional depth dimension (i.e., the z-axis) sig-
nificantly increases memory consumption. As a result, the
usable depth is often constrained to a small value. To enable
successful training of SAM under limited GPU memory, we



adopt dataset-specific configurations.
For the ACDC dataset, the median depth is only 9 slices,

which fits well within the memory constraints and thus does
not require major compromises. In this case, we use the
SAM base model with 21M tunable parameters and ap-
ply a series of CNN-based upsampling operations to ex-
pand the spatial resolution in the x and y dimensions to
SAM’s default input size (1024×1024). This configura-
tion achieves near breakthrough-level performance, demon-
strating the strong segmentation capability of SAM when
adapted to 3D medical images with shallow depth.

In contrast, the AMOS22 and Synapse datasets contain
significantly larger depth (z-axis) values. Reducing the
depth too much in these datasets would hinder the model’s
ability to capture long-range 3D context, leading to weak
semantic predictions and degraded performance. Therefore,
instead of upsampling x and y dimensions to 1024×1024 via
CNNs, we do not change the patch size for SAM’s modules,
allowing more slices along the z-axis to be processed under
the same memory budget. Given the increased difficulty of
the two datasets, larger anatomical variation, more target
classes, and greater image complexity, we adopt the SAM
huge model as the backbone, resulting in 66M and 65M tun-
able parameters for AMOS22 and Synapse, respectively.


