
PVMamba: Parallelizing Vision Mamba via Dynamic State Aggregation

Fei Xie1 Zhongdao Wang2 Weijia Zhang1 Chao Ma1,*
1 MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

2 Huawei Noah’s Ark Lab
{jaffe031, weijia.zhang, chaoma}@sjtu.edu.cn wangzhongdao@huawei.com

1. Overview of Appendix

In the appendix, we first provide additional architecture de-

tails in Sec. 2. Then, we present more theoretical analysis

and details about the DSA scheme in Sec. 3. We provide the

detailed experimental settings in Sec. 4. We also conduct

more experiments in downstream tasks, including genera-

tive tasks in Sec. 5. In the final section, we provide some

visualization results on generative tasks in Sec. 6.

2. Architecture Details

The detailed architecture specifications are presented in

Tab. 1, assuming an input image size of 224×224 for all

architecture variants. We also present a schematic view of

the proposed DSA layers with a detailed illustration of the

repeated pattern in Sa-DSA layers. “ConL (a, b, k3)” indi-

cates a convolutional layer with a kernel size of 3 × 3 fol-

lowed by the BN and ReLU layers. a and b indicate the in-

put and output channel dimensions, respectively. In Fig. 1,

we show the overall model structure of PVMamba with the

detailed stacked layers in each model stage. We also present

the layer pattern of the stacked Sa-DSA layers on the main

stage. The repeated pattern is two reusing layers and one re-

fining layer. The main model stage is repeated by stacking

the Sa-DSA using an interleaved design.

3. Detail of DSA Scheme

3.1. Theoretical Analysis of SSM

State Space Models (S4). State Space Models (SSMs) are

a general family of sequence models used in deep learn-

ing that are influenced by systems capable of mapping one-

dimensional sequences in a continuous manner. These mod-

els transform input D-dimensional sequence x(t) ∈ R
L×D

into output sequence y(t) ∈ R
L×D by utilizing a learnable

latent state h(t) ∈ R
N×D that is not directly observable.

* Corresponding author.

The mapping process could be denoted as:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(1)

where A ∈ R
N×N , B ∈ R

D×N and C ∈ R
D×N .

Discretization. Discretization aims to convert the contin-

uous differential equations into discrete functions, aligning

the model to the input signal’s sampling frequency for more

efficient computation [8]. Following the work [9], the con-

tinuous parameters (A, B) can be discretized by zero-order

hold rule with a given sample timescale Δ ∈ R
D:

Ā = eΔA,

B̄ = (eΔA − I)A−1B,

C̄ = C,

B̄ ≈ (ΔA)(ΔA)−1AB = ΔB,

h(t) = Āh(t− 1) + B̄x(t),

y(t) = C̄h(t),

(2)

where Ā ∈ R
N×N , B̄ ∈ R

D×N and C̄ ∈ R
D×N .

To simplify calculations, the repeated application of

Equation 2 can be efficiently performed simultaneously us-

ing a global convolution approach.

y = x�K

with K = (CB,CAB, ...,CA
L−1

B),
(3)

where � denotes convolution operation, and K ∈ R
L is the

SSM kernel.

Selective State Space Models (S6). Mamba [7] improves

the performance of SSM by introducing Selective State

Space Models (S6), allowing the continuous parameters to

vary with the input and enhancing selective information

processing across sequences, which extends the discretiza-

tion process by selection mechanism:

B̄ = sB(x),

C̄ = sC(x),

Δ = τA(Parameter + sA(x)),

(4)

1

downsp. rate

(output size)
PVMamba-v1 (for ablation) PVMamba-Tiny PVMamba-Small PVMamba-Base

stage 1
4×

(56×56)

ConvL(3, 48, k3) ×3, ConvL(3, 64, k3) ConvL(3, 64, k3) ConvL(3, 96, k3)[
Local DSA

sz.3× 3, dim 48

]
× 2

[
Local DSA

sz.3× 3, dim 64

]
× 2

[
Local DSA

sz.3× 3, dim 64

]
× 3

[
Local DSA

sz.3× 3, dim 96

]
× 3

stage 2
8×

(28×28)

ConvL(48, 96, k3) ×3, ConvL(64, 128, k3) ConvL(64, 128, k3) ConvL(96, 192, k3)[
Local DSA

sz.3× 3, dim 96

]
× 2

[
Local DSA

sz.3× 3, dim 192

]
× 4

[
Local DSA

sz.3× 3, dim 192

]
× 4

[
Local DSA

sz.3× 3, dim 384

]
× 4

stage 3
16×

(14×14)

ConvL(96, 192, k3) ×3, ConvL(128, 256, k3) ConvL(128, 256, k3) ConvL(192, 384, k3)[
Sa-DSA

Points.5, dim 96

]
× 8

[
Sa-DSA

Points.5, dim 192

]
× 8

[
Sa-DSA

Points.5, dim 192

]
× 21

[
Sa-DSA

Points.5, dim 384

]
× 21

stage 4
32×

(7×7)

ConvL(192, 384, k3) ×3, ConvL(256, 512, k3) ConvL(256, 512, k3) ConvL(384, 768, k3)[
Vanilla attention

dim 384, head 24

]
× 4

[
Vanilla attention

dim 512, head 24

]
× 4

[
Vanilla attention

dim 512, head 24

]
× 5

[
Vanilla attention

dim 768, head 24

]
× 5

Table 1. Detailed architecture specifications.

St
em

Local DSA
Layer

L1

D
ow

n
Sa

m
pl

in
g

Local DSA
Layer

L2
D

ow
n

Sa
m

pl
in

g

Spatial-
adaptive DSA

Layer

L3 D
ow

n
Sa

m
pl

in
g

Attention
Layer

L4

H
ea

dInput
image

Sa-D
SA

layer
learn from

scratch

Sa-D
SA

layer
reusing

Sa-D
SA

layer
reusing

Sa-D
SA

layer
refine

repeated pattern
Sa-DSA with layer multiplexing

predict

S
layer

DSA ith l lti
layer

add

xing
layer

predict

Figure 1. Detailed architecture of PVMamba and the layer multiplexing pattern.

where sB(x) and sC(x) are linear functions that project in-

put x into an N-dimensional space, while sA(x) broadens

a D-dimensional linear projection to the necessary dimen-

sions.

3.2. Motivation to develop DSA scheme.
We present the pseudo-code of Mamba [7] scheme in Alg. 1.

The for-loop procedure of solving SSM heavily relies on

hardware optimization tricks to speed up and address the in-

herent sequential constraints when handling 2D visual data.

Vision Mamba needs to convert 2D visual data into 1D se-

quential formats, limiting its spatial modeling capabilities.

A sequential computing pipeline introduces latency, which

is unfriendly to the current parallel deep learning paradigm.

To break the sequential constraint, we parallelize the se-

quential for-loop solving procedure using reasonable as-

sumptions. We reformulate the original sequential comput-

ing in the Mamba scheme by matrix multiplication and a dy-

namic operator. The DSA scheme overcomes the sequential

constraints that can directly process 2D visual data. The dy-

namic operator can maintain the linear computational com-

plexity of the original Mamba. Our DSA scheme can dy-

namically select sparse points to model the spatial contexts

using the SSM scheme. We assume that the hidden state can

be parallelly aggregated by a selection of input pixel embed-

ding x. Thus, we do not need to compute the hidden state

recursively from the previous hidden state. Our assumption

is based on the observation that the information density in

Algorithm 1 Pseudo code of Mamba scheme

#input: x; params: delta, A, B, C, D; output: out
def Mamba-SSM-Solver(x):

Generating Parameter Matrix for SSM
delta = SoftPlus(Linear(x))
B, C = Split(Linear(x))
A, D = self.embedding_A, self.embedding_D
deltaA = torch.exp(delta * A)
deltaB_x = delta * B * x

For-loop solving procedure of SSM
x = torch.zeros_like(A)
ys = []
for i in range(len(x)):

x = deltaA[:, :, i, :] * x + deltaB_x[:, :, i
, :]

y = x * C[:, :, : , i]
ys.append(y)

y = torch.stack(ys)
out = y + x * D
return out

visual signals is far more sparse than the language [11], so

the visual modeling is insensitive to the sequential order.

4. Detailed Experimental Settings
4.1. Image Classification
The training settings mostly follow [24] and [17]. For all

model variants, we use a default input image resolution of

224 x 224 pixels. For different resolutions, such as 384

x 384 pixels, we fine-tune the models that were initially

trained at the 224 x 224 resolution rather than training from

scratch. This approach is based on the work presented in

[17], and it helps to reduce GPU usage.

When training from scratch with a 2242 input, we use the

AdamW optimizer [18] for 300 epochs, employing a cosine

decay learning rate scheduler with a linear warm-up over

the first 20 epochs. The training setup includes a batch size

of 1024, an initial learning rate of 0.001, a weight decay of

0.05, and gradient clipping with a maximum norm of 1. In

our training process, we incorporate most of the augmenta-

tion and regularization strategies outlined in [24]. These in-

clude RandAugment [6], Mixup [28], CutMix [27], random

erasing [29], and stochastic depth [15]. However, we do

not use repeated augmentation [13] or Exponential Moving

Average (EMA) [20], as these do not improve performance.

It is important to note that this approach contrasts with the

findings in [24].

4.2. Object Detection and Instance Segmentation
We consider a typical object detection framework: Cas-

cade Mask R-CNN [1, 10] in mmdetection [3]. For detec-

tion task setting, we utilize the same settings: multi-scale

training [2, 23] (resizing the input such that the shorter

Method Parameter FID↓
DiT-S/8 [19] 33.1 M 151.2

PVMamba-S/8 32.0 M 136.4

Table 2. Benchmarking class-conditional image generation on Im-

ageNet 256×256. PVMamba-S/8 achieves state-of-the-art FID.

side is between 480 and 800 while the longer side is at

most 1333), AdamW [18] optimizer (initial learning rate of

0.0001, weight decay of 0.05, and batch size of 16), and 3x

schedule (36 epochs with the learning rate decayed by 10×
at epochs 27 and 33).

4.3. Semantic Segmentation

The ADE20K dataset [30] is a popular semantic segmen-

tation dataset that includes a diverse array of 150 semantic

categories. It contains a total of 25,000 images, with 20,000

designated for training, 2,000 for validation, and 3,000 for

testing. For our implementation, we utilize UperNet [25]

within the mmsegmentation framework [4], which was se-

lected for its high efficiency.

For a fair comparison, we adopt a similar training setting

following [16, 17]. During training, we utilize the AdamW

optimizer [18], starting with an initial learning rate of 6 ×
10−5 and a weight decay of 0.01. We implement a scheduler

that employs linear learning rate decay along with a linear

warmup for the first 1,500 iterations. The models are trained

on 8 GPUs, with two images processed per GPU over a total

of 160,000 iterations. For data augmentation, we follow the

default settings in mmsegmentation, which include random

horizontal flipping, random re-scaling within the range of

[0.5, 2.0], and random photometric distortion.

During inference, a multi-scale test is conducted using

resolutions that are 0.5, 0.75, 1.0, 1.25, 1.5, and 1.75 times

the resolution used during training. When reporting test

scores, both the training and validation images are included,

following common practice [26].

5. Additional Experiments

5.1. On Generative Tasks

In recent years, generative tasks have become increasingly

popular in the field of computer vision. These tasks involve

the creation of new content using algorithms that can gener-

ate images, videos, or other types of visual media based on

learned patterns from existing data. Generative tasks have

diverse applications in vision, ranging from enhancing im-

age resolution and style transfer to creating entirely new im-

ages that reflect different artistic styles or real-world scenes.

These techniques are also being used in areas such as vir-

tual reality, gaming, and even scientific fields like medicine,

Image generation conditioned on class label

100

150

200

250

0 100 200 300 400 500

DVM-S/8

DiT-S/8

Training Steps (K)

FI
D

-5
0K

Figure 2. FID-50K results over training iterations. DVM refers to

the model in which PVMamba is adopted as the latent diffusion

transformer. The training curve of DiT [19] is also presented.

81

83

85

300 500 700 900 1100 1300 1500 1700

PVMamba VMamba
PVTv2 SwinT
ConvNext

Im
ag

eN
et

 T
op

-1
 A

cc
. (

%
)

Throughput (image./s)

Figure 3. Throughput comparisons with other state-of-the-art

methods.

where they can assist in synthesizing medical images for

training and research purposes.

The combination of diffusion models [5] and several

basic deep network architectures has proven successful in

high-fidelity image and video generation tasks. We apply

our DSA layer into the DiT-like [19] diffusion models to

test the performance of generative tasks. The training set-

tings mostly follow the DiT [19]. We show the qualitative

and quantitative results using ImageNet benchmark [22].

As shown in Tab. 2 and Fig. 2, we measure the perfor-

mance for the generative task by Frechet Inception Dis-

tance (FID) [12], the standard metric for evaluating gener-

ative models of images. Our PVMamba-S/8 model, which

uses fewer model parameters (32.0M vs.33.1M) and com-

putational requirements measured in FLOPs, outperforms

the strong method DiT-S/8 by 14.8 in FID in the class-

conditional image generation task. This success highlights

not only the effectiveness of the model in generating high-

quality images but also its potential for application in vari-

ous generative downstream tasks [14, 19, 21].

The competitive results achieved by PVMamba-S/8 sug-

gest that it possesses a robust generalization ability, allow-

ing it to adapt effectively to different scenarios and data

variations. This adaptability is essential for tasks that re-

quire generating images or other media types based on di-

verse input conditions. Overall, the PVMamba-S/8 model

represents a significant advancement in generative model-

ing, underscoring its promise for future applications in the

field.

6. Visualization Results
In Fig. 4 and Fig. 5, we showcase the Diffusion models

that utilize the proposed PVMamba backbones. These mod-

els exhibit a promising level of image quality, highlighting

their effectiveness in generating high-fidelity images. We

have included selected samples from our class-conditional

PVMamba-S/8 models, which were trained on the Ima-

geNet dataset [22]. The training focused on producing im-

ages at a resolution of 256×256 pixels. By presenting these

samples, we illustrate the capabilities of our models in ren-

dering detailed and coherent images, demonstrating the po-

tential of PVMamba backbones in the context of diffusion

processes.

References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving

into high quality object detection. In CVPR, 2018. 3

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-

to-end object detection with transformers. In Proceedings of
European Conference on Computer Vision, 2020. 3

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, et al. MMDetec-

tion: Open mmlab detection toolbox and benchmark. arXiv
preprint, 2019. 3

[4] MMSegmentation Contributors. MMSegmentation:

Openmmlab semantic segmentation toolbox and

benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020. 3

[5] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,

and Mubarak Shah. Diffusion models in vision: A survey.

TPAMI, 45(9):10850–10869, 2023. 4

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Randaugment: Practical automated data augmentation

with a reduced search space. In CVPR, 2020. 3

[7] Albert Gu and Tri Dao. Mamba: Linear-time sequence mod-

eling with selective state spaces. In ICML, 2024. 1, 2

[8] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri

Dao, Atri Rudra, and Christopher Ré. Combining recurrent,

convolutional, and continuous-time models with linear state

space layers. In NeurIPS, 2021. 1

[9] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state

spaces are as effective as structured state spaces. In NeurIPS,

2022. 1

Figure 4. Visualization results of generative tasks with the proposed PVMamba backbone.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of International Confer-
ence on Computer Vision, 2017. 3

[11] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr

Dollár, and Ross Girshick. Masked autoencoders are scalable

vision learners. In CVPR, 2022. 3

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In NeurIPS, 2017. 4

[13] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten

Hoefler, and Daniel Soudry. Augment your batch: Improving

generalization through instance repetition. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2020. 3

[14] Vincent Tao Hu, Stefan Andreas Baumann, Ming Gui, Olga

Grebenkova, Pingchuan Ma, Johannes Fischer, and Bjorn

Ommer. Zigma: Zigzag mamba diffusion model. In ECCV,

Figure 5. Visualization results of generative tasks with the proposed PVMamba backbone.

2024. 4

[15] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger. Deep networks with stochastic depth. In Pro-
ceedings of European Conference on Computer Vision, 2016.

3

[16] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi

Xie, Yaowei Wang, Qixiang Ye, and Yunfan Liu. Vmamba:

Visual state space model. In NeurIPS, 2024. 3

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. In

ICCV, 2021. 3

[18] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. In ICLR, 2018. 3

[19] William Peebles and Saining Xie. Scalable diffusion models

with transformers. In CVPR, 2023. 3, 4

[20] Boris T Polyak and Anatoli B Juditsky. Acceleration of

stochastic approximation by averaging. arXiv preprint, 2019.

3

[21] Jiacheng Ruan and Suncheng Xiang. Vm-unet: Vi-

sion mamba unet for medical image segmentation.

arXiv:2402.02491, 2024. 4

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, and Michael Bernstein. ImageNet Large

scale visual recognition challenge. IJCV, 115:211–252,

2015. 4

[23] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng

Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,

Changhu Wang, et al. Sparse r-cnn: End-to-end object de-

tection with learnable proposals. arXiv preprint, 2020. 3

[24] Hugo Touvron, Matthieu Cord, Matthijs Douze, et al. Train-

ing data-efficient image transformers & distillation through

attention. In ICML, 2021. 3

[25] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and

Jian Sun. Unified perceptual parsing for scene understand-

ing. In ECCV, 2018. 3

[26] Minghao Yin, Zhuliang Yao, Yue Cao, Xiu Li, Zheng Zhang,

Stephen Lin, and Han Hu. Disentangled non-local neural

networks. In ECCV, 2020. 3

[27] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, et al. Cut-

mix: Regularization strategy to train strong classifiers with

localizable features. In Proceedings of International Confer-
ence on Computer Vision, 2019. 3

[28] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, et al.

mixup: Beyond empirical risk minimization. In Interna-
tional Conference on Learning Representations, 2018. 3

[29] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random erasing data augmentation. In CoRR
abs/1708.04896, 2017. 3

[30] Bolei Zhou, Hang Zhao, Xavier Puig, et al. Scene parsing

through ade20k dataset. In CVPR, 2017. 3

