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A. Additional Experimental Results
A.1. Additional Results on UCF-101
Our method AID, is primarily designed for the text-guided video prediction(TVP) task and is validated on task-level datasets.
Most previous text-guided video generation methods [12, 13, 24, 33] use UCF-101 [25] as a benchmark for testing. Although
class-conditioned video prediction on UCF-101 is not particularly suitable for TVP tasks, we still conduct experiments under
two settings to evaluate the video generation performance.

Settings We fine-tune our model on the UCF-101 dataset, resizing the video resolution to 256x256 with 16 frames per video.
We conduct experiments under two settings: predicting videos conditioned on 1 and 5 reference frames following [11, 14].
We report FVD and FID metrics following the methods of Seer [11] and VDM [13]. During the testing phase, we sample
2,048 samples from the test set following [11]. We perform class-conditioned video prediction on this dataset by writing
one sentence for each class as the caption for video generation, following the PYoCo [8] method. For example, we rewrite
”biking” as ”A person is riding a bicycle.”

Results We present the class-conditioned video prediction results on UCF-101 in Table 1. When given 1 reference frame,
our method significantly outperforms other video generation models in Fréchet inception distance (FID) [21] and achieves
comparable Fréchet video distance (FVD) [28] results to the large-scale pre-trained Make-A-Video [24] method. For the
TVP task with 5 reference frames, our method performs much better than other methods. Additionally, we provide qualitative
results in Figure 1 and Figure 2.

A.2. Additional Results of Ablation Study
Comparisons of Different Fine-tune Strategies In Table 2, we compare and analyze the impact of different fine-tuning
strategies on performance. We selected SVD [2] and Open-Sora [32] as two baselines and conducted experimental validation
on SSv2 [10], the largest dataset. Both methods exhibited poor zero-shot performance, indicating that even general image-to-
video models show limited quality in generating domain-specific first-person perspective videos. Fine-tuning all parameters
proves effective for adapting to this domain, but it is constrained by coarse text-based control, resulting in a significant gap
compared to our method. Finally, we compared the reconstruction performance of VAE, which serves as an upper baseline.

Visualization of Main Ablations In the main text, we present the quantitative ablation results for the MCondition and
Adapters design. Here, we will show the qualitative ablation comparison results. As illustrated in Fig. 4, we demonstrate the
importance of the various components of MCondition. It is evident that the multi-modal branch is crucial, as it effectively
aligns and integrates the instruction with the initial frames, guiding the subsequent generation steps. The decomposed branch
significantly enhances the stability and consistency of the predicted videos. We also show in Figure 5 that removing different
adapters results in varying degrees of performance degradation, demonstrating the effectiveness of our proposed spatial and
temporal adapters.

The Comparison of Computation Efficiency To validate the computational efficiency of our method, we compare the
training time and GPU usage of our approach with Seer and VideoFusion on a single 80G NVIDIA A100 GPU in Table 3. Our



Table 1. Class-conditioned video prediction performance on UCF-101. We evaluate the AID on the UCF-101 with 16-frames-long videos.
Ex.data indicates that the model has been pre-trained or fine-tuned on extra datasets.

Method Ex.data Cond. Resolution FVD (↓) FID (↓)

MoCoGAN [27] No No 64× 64 - 26998
MoCoGAN-HD [26] No Class. 256× 256 700 -

TGAN-ODE [9] No No 64× 64 - 26512
TGAN-F [15] No No 128× 128 - 7817
DIGAN [31] No No - 577 -

TGANv2 [23] No Class. 128× 128 1431 3497
VDM [13] No No 64× 64 - 295

TATS-base [7] No Class. 128× 128 278 -
MCVD [29] No No 64× 64 1143 -
LVDM [12] No No 256× 256 372 -

MAGVIT-B [30] No Class. 128× 128 159 -
PYoCo [8] No No 256× 256 310 -

Dysen-VDM [8] No No 256× 256 255 -
VDT [18] No No 64× 64 226 -

VideoFusion [19] txt-video Class. 128× 128 173 -
CogVideo [14] txt-img & txt-video Class. 160× 160 626 -

Make-A-Video [24] txt-img & txt-video Class. 256× 256 81.25 -
MagicVideo [33] txt-img & txt-video Class. - 699 -

AID (1 Ref. frames) txt-img & txt-video Class. 256× 256 102 16.5

CogVideo [14] (5 Ref. frames) txt-img & txt-video Class. 160× 160 109.23 -
Seer [11] (5 Ref. frames) txt-img Class. 256× 256 260.7 -

AID (5 Ref. frames) txt-img & txt-video Class. 256× 256 61.22 12.1

Table 2. The comparisons of different fine-tune strategies of SVD [2] and Open-Sora [32]. We report the FVD in SSv2 datasets.

Methods Strategy Finetuned Parameters (↓) FVD (↓)

Open-Sora [32] Zero-Shot - 903.37
Open-Sora [32] Fully-Finetune 1147M 213.42

SVD [2] Zero-Shot - 592.14
SVD [2] Fully-Finetune 1528M 163.78

SVD (Ours) Adapter-Tuning 216M 50.23

Upper Baseline VAE Reconstruction - 7.14

method, which fixes the 3D UNet and only trains the newly added parameters, shows significantly lower GPU usage and faster
training compared to full-finetuning methods. Additionally, in Table 4, we compare the training time, GPU consumption, and
batch size of our method under the condition where GPU memory usage exceeds 90%. The default training approach allows
for a larger batch size and shorter training time on a single card compared to full fine-tuning.

The Comparison of Model Generalization Capability To validate the generalization capability of our method and its
performance in an open set, we present a qualitative comparison in Fig. 3. We use cartoon images generated by DALL-E [22]
and real images captured by an iPhone as reference images to generate videos based on given instructions. We compared
our method against Seer [11], as well as several state-of-the-art open-source [3, 32] and even commercial Image2Video
methods [6, 16, 17]. It can be observed that our model demonstrates more precise instruction-following capabilities compared
to other methods, highlighting the superior generalization ability of our approach. We also conducted experiments as shown
in Table 5, comparing Seer, SVD, and our method. After training on Sthv2 [10], we evaluated their zero-shot performance
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Figure 1. Visualization of text-conditioned video prediction on UCF-101 with 1 reference frame.

on Epic-Kitchen [5] using the FVD [28] metric. The results show that our method achieves the best zero-shot performance,
which further demonstrates the generalizability of our approach.

The Comparison of the instruction-following capability To further quantitatively assess the instruction-following ability
of our method, we compared its performance on Sthv2 against Seer, SVD, and GroundTruth. The metric CLIPSIM measures
the CLIP similarity between the text instruction features and the visual features of video frames; higher values indicate better
compliance with the given instructions. As shown in Table 6, our method outperforms both Seer and SVD and is close to
GroundTruth.

Table 3. Training time (time.) and GPU memory (Mem.) con-
sumption of the models (16-frame).

Model
time

(s/iter.)
Mem.
(GB)

Ours 1.03 24.68
Ours(full finetune) 1.45 45.49

Seer 0.75 24.97
VideoFusion 1.07 45.00

Table 4. Training time (time.) and GPU memory (Mem.) consump-
tion of the models (16-frame, ≥ 90% GPU memory usage).

Model
time

(s/iter.)
Mem.
(GB) Batch

Ours 1.99 76.9 6
Ours(full finetune) 2.56 71.7 3

Seer 3.10 72.9 6
VideoFusion 7.68 78.7 3

A.3. Human Evaluation
In the main text, we provide a quantitative analysis of the experimental results. Additionally, we conducted human evaluation
experiments. We randomly selected 50 samples from the Something-Something v2 dataset, and 25 samples each from



AID (Ours)

Reference frame (a) Someone is playing the guitar

GT

AID (Ours)

GT

(b) Someone is lifting weights with a bench press.

(d) Someone is playing the flute.

(c) A person is applying eye makeup.

AID (Ours)

GT

AID (Ours)

GT

Figure 2. Visualization of text-conditioned video prediction on UCF-101 with 5 reference frames.

Table 5. The FVD results of Zero-shot setting.

Seer SVD AID(ours)

Sthv2 (Training) 112.9 163.8 50.2
Epic100 (Zero-shot) 631.88 831.34 487.2

Table 6. The results of instruction following capability.

Seer SVD AID(ours) G.T.(upper)

FVD(↓) 112.9 163.8 50.2 -
CLIPScore(↑) 26.36 25.79 26.98 27.80

the BridgeData and Epic-Kitchen datasets, creating a total of 100 data pairs generated from Seer and AID. We invited 30
volunteers for anonymous selection, resulting in 3000 samples. As shown in Figure 12, we designed a questionnaire asking
them to choose the video with higher quality, better alignment with the instruction and better frame consistency. The results
indicate that our method significantly outperforms the previous state-of-the-art method, Seer [11], in terms of video quality
and text alignment.

B. Broader Impact and Limitations
Broader Impact The generative models for text-guided video prediction have the potential to revolutionize media creation
and utilization. When exploring their applications in tutorial video production and robotics, it is crucial to mitigate the risk
of these models being used to generate misinformation or cause harm before they can be deployed in real-world scenarios.
Additionally, a thorough examination of the models themselves, their intended uses, safety concerns, associated risks, and
potential biases is essential before practical implementation.

Limitations Although our method shows significant improvements in Text-guided video prediction (TVP) tasks compared
to previous approaches, it has fundamental limitations in synthesizing long videos. While we can progressively generate
long videos using an iterative autoregressive method, this inference process remains quite costly. Additionally, our method
is based on the SVD [2] image2video model, which lacks any textual descriptions and may not perform well on TVP tasks
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Figure 3. Qualitative comparison of video prediction with baselines on generated and real photoed reference image.

involving rare or novel protagonists. The optimal solution would be to pre-train our MLLM-aided method on a large-scale
text-video dataset (e.g., WebVid-10M [1], Panda-70M [4]) before transferring it to domain-specific TVP datasets.

Failure Case We also present the failure cases of our method in Figure 9. In case (a), the instruction is ”Moving pen and
marker closer to each other.” Although our method successfully moves the pen and marker closer together, the left hand does
not touch the pen, yet the pen moves, which violates physical laws. However, even the state-of-the-art Sora [20] generation
model occasionally produces videos that violate real-world physics. Expanding the training dataset and increasing the number
of training steps may help alleviate this issue. In case (b), the instruction is ”Putting jar on a surface.” Since there is no jar in
the reference frame, our model successfully predicts the future motion but generates a jar that differs from the real scene. This
failure case might be addressed by expanding the training dataset. As for cases (c) and (d), these are failure examples from
the Epic-Kitchen [5] dataset. We find that the videos in this dataset have intense motions and involve fine-grained objects,
such as ”pick up knife” in case (d). For these challenging cases, the generation performance of our model deteriorates.
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Figure 4. Ablation Study of different conditions on Something Something V2.

C. Implementation Details
C.1. Details of hyperparameters and fine-tuning
In this section, Table 7 provides an overview of the hyperparameters, fine-tuning details, sampling procedures, and hardware
specifications of our AID model.



(a) Pushing jar from left to right

AID (Ours)

GT

Reference frame

w/o Adapter

w/o SA

w/o TA

w/o LTA

w/o STA

AID (Ours)

GT

w/o Adapter

w/o SA

w/o TA

w/o LTA

w/o STA

(b) Moving away from toy giraffe with your cameraReference frame

Figure 5. Ablation Study of different adapters on Something Something V2.
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Figure 6. Illustration of the dimensionalities of each feature.

C.2. Details of DQFormer
In this section, we show the hyperparameters of DQFormer in Table 8. In addition, we present the specific dimensions of
each feature in the DQFormer architecture in Fig. 6.

Table 7. Hyperparameters and details of Fine Tun-
ing/Inference.

Param. Value

optim. AdamW
Adam-beta1 0.9
Adam-beta2 0.999

Adam-epsilon 1e−8

weight decay 1e−2

lr 5e−5

lr scheduler constant
train batch size 8/GPU

resolution 256× 256
train. steps 100k

train. hardware 4 NVIDIA-A100
sampling steps 30

text guidance scale 12
visual guidance scale 1.5

Table 8. Hyperparameters of setting of DQFormer.

HyperParam. Value

learnable tokens channels 1024
output channels 1024
base channels 1024

Number of layers 2
Number of atten. heads 8

Dimension of cross-atten. 1024
Number of query length 77

D. Additional Visualization
In this section, we provide additional visualizations of AID. The results on the Epic-Kitchen dataset are shown in Figure 11,
and the results on the Bridge dataset are presented in Figure 10. We also demonstrate the long video prediction and text-
guided video manipulation examples in Figure 13 and Figure 8. In cases (2)-(4), we use the last two frames of the previous
clip as the initial frames for the next clip, allowing iterative extension into longer videos. Other cases demonstrate that
given the same reference frame, different instructions can predict different future video frames. Finally, in Figure 14, we
provide examples of the prompts and feedback of MLLM model. Although we provide many sample figures in this paper, we
recommend readers visit the website “website/index.html” in the supplementary materials to see the demos in video
style.
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Pulling the iphone adapter from left to right.
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Putting a card on the table.

Covering the card with a blanket.

Figure 8. Examples of long video prediction with different instruction.
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Figure 9. Failure cases of AID on Something Something-V2 and Epic-kitchen.
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Figure 10. Visualization of text-conditioned video prediction on Bridge with 1 reference frame compared to Seer [11], Gen-2 [6], PiKa [17].
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Figure 11. Visualization of text-conditioned video prediction on Epic-kitchen with 1 reference frame compared to Seer [11].



Figure 12. Screenshot of a questionnaire example shown to human evaluators.



(1) Pretending or failing to wipe ink off of a dry erase board

(2) Wipe ink off of a dry erase board

(3) Wipe ink off of a dry erase board

(4) Wipe ink off of a dry erase board

(5) Put pepper in the pot

(6) Put pot in the sink.

(7) Put carrot on the plate.

(8) Put the red bottle on the plate.

Ref. frames
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Figure 13. Examples of long video prediction and instruction-based video manipulation are provided.



Input: I have a prompt “[video prompt]” for video generation. This prompt guides the process of generating a video from 
the given <image>. Can you describe this process in separate states? Each state should be described in only one 
sentence, and please ensure the descriptions between states are coherent. Be straightforward and avoid a narrative 
style. Additionally, can you align the description with the provided image? There should be four states in total. Output:

1. The person is holding a piece of paper. 2. The person is tearing the paper into two pieces.
3. The person has torn the paper into two pieces. 4. The two pieces of paper are on the red carpet.

Ref. frame

1. The tennis ball is held in a hand. 2. The hand moves the tennis ball closer to the opening of the mug.
3. The tennis ball is aligned above the mug as if to be dropped in. 4. The hand pulls the tennis ball away from the mug.

Ref. frame (b) pretending to put tennis ball into mug

(a) tearing paper into two pieces

User Prompt:

Ref. frame (c) moving box closer to car

1. The box is initially positioned away from the car. 2. The box is being moved closer to the car.
3. The box is now in close proximity to the car. 4. The box is now positioned next to the car.

Figure 14. Examples of the input and feedback of the Multi-modal Large Language Model.
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