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8. Experiment Details
8.1. Openoodv1.5 Dataset Setting
We conduct experiments on OpenOOD v1.5 [45] bench-
mark. It consists of 4 ID datasets, CIFAR10/100 [20], Im-
ageNet200 [45], and ImageNet-1k [4]. Each ID dataset
contains several near-OOD and far-OOD test sets, where the
near-OOD test sets are more challenging than the far-OOD
ones.
CIFAR10/100 are relatively small datasets. They have the
same far-OOD test set containing MNIST [22], SVHN [28],
Textures [2], and Places365 [47]. TinyImageNet [21] and
CIFAR100 are adopted as near-OOD evaluation sets for
CIFAR10; while TinyImageNet and CIFAR10 are adopted
for CIFAR100. For network architecture, we adopt the same
network backbone, ResNet18 as OpenoodV1.5 [45].
ImageNet-1k is a large-scale dataset consisting of 1281167
training images of 1000 classes. It has 2 near-OOD dataset,
SSB-hard [37] and NINCO [1], and 3 far-OOD datasets,
iNaturalist [16], Textures [2], and OpenImage-O [39]. To
be consistent with Openood V1.5 benchmark, ResNet50,
Swin Transformer (Swin-T), and Vision Transformers (ViT)
are adopted as pretrained backbone. Besides these mod-
els, some additional torchvision pre-trained models are
evaluated.
ImageNet200 is a subset of ImageNet-1k, which contains
200 classes. It has the same near-OOD and far-OOD datasets
as ImageNet-1k. Following OpenoodV1.5 [45], ResNet-18
is adopted as the network backbone.
Evaluation Metrics. FPR@95 and AUROC are adopted
to evaluate the OOD performance. FPR@95 is the false
positive rate when the true positive rate is 95%, while AU-
ROC is the Area under the receiver operating characteristic
curve. Lower FPR@95 and higher AUROC deliver better
separation between ID and OOD samples.

8.2. Training Settings
We follow the training setting of Openoodv1.5 [45]. All
models are trained 100 epochs with learning rates starting
from 0.1. The same Cosine learning rate schedule is adopted
as OpenOODv1.5. For CIFAR10/100 and ImageNet200,
batch size is 128; for ImageNet-1k, batch size is 512. All
the models are repeated with 3 random seeds and the mean
results are reported. For AugDelete models, we retrain the
fc layers for 15 epochs with learning rates starting from
0.01. Following torchvision, both vanilla mixup [44]
and cutmix [43] are adopted for models with mixup. We
use mixup in the main text of this paper to represent the
combination of both vanilla mixup and cutmix. The mixup

strength λ of vanilla mixup and cutmix follows Beta dis-
tribution Beta(0.2, 0.2) and Beta(1, 1), respectively. The
separated impacts of vanilla mixup and cutmix on OOD de-
tection are shown in Table 7, both vanilla mixup and cutmix
will degrade OOD performance, which is in accordance with
observations in the main text of this paper.

We compare our baseline results (recipe v1) with the
OpenOOD v1.5 checkpoint with receipt v1 in Table 5. All
the models are repeated with 3 random seeds and the mean
results are reported. Our re-implementation shows similar
results as OpenOOD v1.5.

8.3. Impact of Augmentations of Torchvision train-
ing recipes on OOD Detection

As shown in Table 6, v2 models perform worse than v1 mod-
els in OOD detection with logit-based (MLS, GEN, EBO)
and hybrid (VIM, NNGuide) score functions. Compared to
torchvision v1 models, v2 models adopts several additional
data augmentations and training techniques as follows:
Data-Based Augmentation 1: Random Erasing (RE) [46]
applies random zero masking in the input sample x with a
probability per. It reduces over-fitting and improves the
generalization of neural networks. In experiments, per =
0.1.
Data-Based Augmentation 2: Trivial Augment (TA) [27]
is a parameter-free set of image transformations to the input
sample x such as solarize, posterize, brightness adjustment,
etc. During training, TA randomly selects a single augmen-
tation and an augmentation strength from a pre-defined set.
Label-Based Augmentation 1: Label Smoothing (LS) [34]
limits overconfidence by adding a uniform vector to label y:

Lls
CE(v,y

ls) = −(yls)T log(σ(v)),

yls = (1− β)y + βu, 0 ≤ β < 1,
(15)

where u ∈ RC is a uniform vector with all elements equal
to 1, β is the label smoothing strength, and σ is the softmax
function. A larger β denotes smoother learning targets; in
experiments, β = 0.1.
Label-Based Augmentation 2: Mixup [44] interpolates
new samples (xmix,ymix) by linearly combining two sam-
ples in both the data and label spaces:

xmix = (1−λ)x+λx1, ymix = (1−λ)y+λy1. (16)

The cross-entropy loss is applied to the mixed samples
(xmix,ymix) in a standard fashion:

Lmix
CE (vmix,ymix) = −(ymix)T log(σ(vmix)),

vmix = F (xmix).
(17)



Dataset Implemention
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

CIFAR10 Ours 87.54 60.39 91.04 40.17 94.59
Openood V1.5 87.52 61.32 91.10 41.68 95.06

CIFAR100 Ours 81.16 55.69 80.75 54.49 77.22
Openood V1.5 81.05 55.47 79.67 56.73 77.25

ImageNet200 Ours 82.43 60.21 90.84 34.40 86.40
Openood V1.5 82.90 59.76 91.11 34.03 86.37

Table 5. Comparison between OpenoodV1.5 models and our re-implementation. The same receipt v1 is adopted in both implementations.

VIM NNguide GEN EBO MLS
ResNet50-v1 82.38 86.68 83.31 82.68 83.02
ResNet50-v2 57.01 65.77 82.46 52.88 72.84
RegNet-v1 83.13 87.09 85.10 82.94 83.36
RegNet-v2 71.49 42.82 84.22 68.70 75.27

MobileNet-v1 79.83 82.59 79.98 79.98 80.35
MobileNet-v2 70.40 69.47 78.36 69.98 77.32

Table 6. AUROC of ImageNet-1k v1 and v2 models across various backbones and OOD functions. v2 models show worse AUROC.

Mixup creates a smooth transition between different classes
and can improve ID generalization. Following torchvision
recipe v2, two variants of mixups, vanilla mixup [44] and
cutmix [43], are adopted in experiments. The mixup strength
λ of vanilla mixup and cutmix follows Beta distribution
Beta(0.2, 0.2) and Beta(1, 1), respectively. The separated
impacts of vanilla mixup and cutmix on OOD detection are
shown in Table 7 and 9.
Training technique 1: Longer Training (LT) means in-
creasing the training epochs. In experiments, we increase
epoch numbers from 100 to 200 when using LT.
Training technique 2: Adjusted Weight Decay means
adjust the weight decay value. Specifically, weight decay for
the parameters of the normalization layers is set to be 0 in
v2 recipes.
Training technique 3: Exponentially Moving Average
(EMA) of model parameter: EMA [19] applies the moving
average process to model parameters θ following:

θ(t+1) = γθt + (1− γ)θ (18)

Where θt denotes the model parameters at the t-th step. In ex-
periments, the EMA coefficients γ = 0.99998 as the torchvi-
sion v2 recipes.

Table 10, 11 and 9 show the influence of each data aug-
mentation and training techniques on CIFAR10/100 and
ImageNet200, with a single augmentation for each time. Fol-
low the same training setting as [42], each training configure
is repeated 3 times, and mean results are reported. Besides
the MLS and KNN score function, we also report the results

of more OOD score functions in Table 12.
We further analyze the influence of the mixup coefficients

(α) and label smoothing (LS) coefficients (β) on OOD de-
tection. Table 7 and 8 show the result of mixup strength
and LS coefficients on ImageNet200, respectively. We can
observe that i) for both vanilla mixup and cutmixup, larger
mixup coefficients α will lead to worse OOD performance;
ii) Larger label smoothing coefficients β will also cause
larger decrements in OOD AUROC.

Vanilla Mixup CutMix
α 0.2 1.0 10.0 0.2 1.0 10.0

AUROC 86.48 84.70 81.82 83.93 82.45 81.58
ID Acc 87.11 86.27 82.04 86.68 86.30 85.89

Table 7. Compare Vanilla Mixup and Cutmix on ImageNet200.
AUROC is averaged among near-OOD and far-OOD datasets.

β 0.00 0.10 0.25 0.50 0.95
AUROC 87.01 84.00 84.54 84.72 81.30
ID Acc 86.37 86.87 86.45 86.51 75.30

Table 8. LS with different smoothing β on ImageNet200. AU-
ROC is averaged among near-OOD and far-OOD datasets.

8.4. AugDelete for Different Data Augmentation
Table 14, 15 and 13 shows the OOD detection results before
and after applying AugDelete under various data augmenta-
tions. On all 3 datasets, We observe that AugDelete improves
models with label smoothing and mixup by a large margin



Score Data Augmentaion
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

MLS

v1 82.90 59.76 91.11 34.03 86.37
v1 +LS 80.74 67.81 87.25 47.82 86.87
v1 + vanilla mixup 82.47 62.21 90.49 35.81 87.11
v1 + cutmix 78.65 73.57 86.25 54.45 86.30
v1 + mixup (both mixups) 81.48 65.49 88.70 43.87 86.86
v1 + RE 82.57 60.40 90.94 34.52 86.54
v1 + TA 82.43 59.81 91.15 33.04 87.04
v1+LS+mixup 79.85 71.43 86.75 51.04 86.92
v1 + all data augs 79.18 72.55 86.50 52.88 86.85
v1 + adjusted weight decay (AWD) 82.60 59.98 91.82 30.93 86.37
v1+ EMA 82.74 59.12 92.83 27.71 86.40
v1 + LT 83.00 59.94 91.04 33.74 87.01
v2 78.11 77.39 85.80 61.35 88.08

KNN

v1 81.59 58.26 91.49 31.15 86.37
v1+LS 81.37 58.46 91.14 31.49 86.87
v1+vanilla mixup 81.39 59.31 90.84 32.55 87.11
v1+cutmix 80.49 60.82 89.81 36.24 86.30
v1+mixup (both mixups) 80.98 60.31 90.17 35.26 86.86
v1+RE 81.24 58.45 90.31 34.35 86.54
v1+TA 81.06 59.36 90.43 33.56 87.04
v1+LS+mixup 81.03 59.88 90.29 34.21 86.92
v1+all data augs 81.24 58.49 89.70 36.64 86.85
v1 + adjusted weight decay (AWD) 80.22 62.58 91.09 33.78 86.37
v1+ EMA 80.53 61.56 92.21 29.20 86.40
v1 + LT 81.78 58.08 91.28 31.63 87.01
v2 82.32 57.04 90.92 33.59 88.08

Table 9. OOD detection results w.r.t data augmentations on ImageNet200. Label-based data augmentations (LS and mixup) cause a
huge OOD performance drop in logits (MLS score), while the negative impact on the feature space is much smaller. Unlike Label-based data
augmentations, data-based augmentations (RE and TA) and training techniques (LT, AWD and EMA) have relatively small impact on both
logit and feature spaces.

while maintaining the ID accuracy. AugDelete can also
slightly improve the OOD Detection performance of RE and
TA. However, with AugDelete, models trained with mixup
or LS are still worse than the v1 model. This is because
AugDelete keeps the pretrained features, thus the negative
impact of label smoothing and mixup are not mitigated.

8.5. Finetune the Fully Connected (FC) Layer or
the Whole Network in AugDelete

AugDelete deletes all data augmentations and finetunes the
FC layer while keeping features fixed, since label smoothing
and mixup influence logits more than features. If further fine-
tuning the feature extractor G, can we get additional gain in
OOD detection? We finetune the entire network or FC layer
for 15 epochs. Table 16 compares the results of finetuning
FC or the whole network. Finetuning the entire network only
gets marginal or no gains compared to finetuning FC layers.
However, finetuning the whole network requires more time
and delivers worse ID accuracy, because deleting all data
augmentation during finetuning will hurt pretrained features.

8.6. AugRevise with Finetuning or Re-training on
ImageNet-1k

AugRevise are assumed to be trained from scratch in the
main text. Here we explore whether AugRevise can work by
finetuning v2 models. Table 17 shows the results of finetun-
ing v2 models with AugRevise for 10 epochs. Finetuning can
significantly improve OOD performance but is worse than
re-training, suggesting a trade-off between training burden
and OOD performance.

8.7. Fixing Mixup for OOD Detection

Mixup is fixed in AugRevise with Lvs loss to increase the
separability between ID and mixed samples. Table 18 and
19 shows the quantitative results of fixing mixup. Regmixup
improves the vanilla mixup but cannot outperform the v1
model in OOD detection. Adopting mixup in AugRevise can
outperform the v1 model in both ID classification and OOD
detection.

We further compare regmixup [30] and mixup-AugRevise



Score Data Augmentaion
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

MLS

v1 87.52 61.32 91.10 41.68 95.06
v1 + LS 82.13 93.76 86.05 85.40 95.23
v1 + mixup 84.39 76.20 88.89 58.10 95.95
v1 + RE 88.47 56.22 91.99 39.53 95.36
v1 + TA 92.15 32.37 95.28 19.68 95.51
v1+all data augs 85.88 77.50 92.07 45.65 95.86
v2 87.05 72.20 91.22 50.00 96.51

KNN

v1 90.64 33.99 92.96 24.28 95.06
v1+LS 90.03 36.81 93.12 21.48 95.23
v1+mixup 91.58 33.38 94.33 21.47 95.95
v1+RE 91.30 33.01 93.96 22.15 95.36
v1+TA 92.32 28.88 95.26 18.83 95.51
v1+all data augs 92.82 27.92 96.34 16.84 95.86
v2 93.30 27.57 96.66 14.94 96.51

Table 10. OOD detection results w.r.t data augmenations on CIFAR10.

Score Data Augmentaion
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

MLS

v1 81.05 55.47 79.67 56.73 77.25
v1 + LS 80.35 58.06 78.44 60.88 77.78
v1 + mixup 77.57 73.10 72.68 78.65 79.69
v1 + RE 80.96 56.48 82.31 52.20 76.91
v1 + TA 81.92 55.78 82.91 50.57 78.78
v1+all data augs 78.34 71.64 74.85 71.46 79.89
v2 78.44 74.01 72.39 76.96 81.19

KNN

v1 80.18 61.23 82.40 53.65 77.26
v1+LS 78.84 61.34 81.24 56.14 77.78
v1+mixup 78.99 60.55 83.08 52.68 79.69
v1+RE 79.91 62.27 83.87 50.99 76.91
v1+TA 79.98 63.89 85.53 46.86 78.78
v1+all data augs 79.69 60.98 85.09 48.70 79.89
v2 80.06 60.34 81.64 54.37 81.19

Table 11. OOD detection results w.r.t data augmentations on CIFAR100.

Data Augmentaion VIM NNGuide GEN EBO MLS
v1 86.98 87.83 87.49 86.68 87.01
v1+RE 86.56 86.44 87.31 86.43 86.76
v1+TA 86.53 86.68 87.34 86.44 86.79
v1+LS 83.31 71.48 85.41 82.15 84.00
v1+mixup 84.52 78.43 86.09 84.06 85.09

Table 12. AUROC of ResNet18 with various data augmentations and OOD functions on ImageNet200. The average values of near-OOD
and far-OOD AUROCs are reported. LS/mixup harms the AUROC of various OOD functions.



Data Augmentaion AugDelete
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 ✗ 82.90 59.76 91.11 34.04 86.37
✓ 82.92 59.24 90.51 35.82 86.26

v1+LS ✗ 80.74 67.81 87.25 47.82 86.87
✓ 81.86 64.21 87.85 45.22 86.94

v1+mixup ✗ 81.48 65.49 88.70 43.87 86.86
✓ 82.51 62.44 89.08 41.88 86.93

v1+RE ✗ 82.57 60.40 90.94 34.52 86.54
✓ 83.06 59.43 90.69 35.49 86.63

v1+TA ✗ 82.43 59.81 91.15 33.04 87.04
✓ 82.97 58.91 90.85 33.90 87.04

v1+all data augs ✗ 79.18 72.55 86.50 52.88 86.85
✓ 82.33 62.70 89.30 40.78 87.14

v1+LS+mixup ✗ 79.85 71.43 86.75 51.04 86.92
✓ 81.83 65.66 88.09 44.92 87.15

v2 ✗ 78.11 77.39 85.80 61.35 88.08
✓ 82.79 62.83 89.91 41.54 88.03

Table 13. AugDelete for models trained with different data augmentations on ImageNet200.

Data Augmentaion AugDelete
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 ✗ 87.52 61.32 91.10 41.67 95.06
✓ 88.01 56.84 91.40 37.56 95.01

v1+LS ✗ 84.39 76.20 88.89 58.10 95.95
✓ 90.04 45.44 92.13 36.80 95.92

v1+mixup ✗ 82.13 93.76 86.05 85.40 95.23
✓ 89.91 40.30 92.54 26.72 95.21

v1+RE ✗ 88.47 56.22 91.99 39.53 95.36
✓ 89.13 50.47 92.48 34.87 95.42

v1+TA ✗ 92.15 32.37 95.28 19.68 95.51
✓ 92.34 29.88 95.14 19.50 95.46

v1+all data augs ✗ 85.88 77.50 92.07 45.65 95.86
✓ 91.61 34.61 94.66 24.81 95.85

v2 ✗ 87.05 72.20 91.22 50.00 96.51
✓ 92.57 30.86 94.86 25.39 96.54

Table 14. AugDelete for models trained with different data augmentations on CIFAR10.

w.r.t different mixup coefficients α in Table 20. It can be
observed that RegMixup delivers worse performance than
the v1 model when α < 10 (lower α indicates lower mixup
strength). In contrast, AugRevise-mixup always outperforms
v1 models, suggesting the benefits of Lvs.

8.8. Compare AugDelete and AugRevise

We compare AugDelete and AugRevise in Table 21 and
Table 22. AugRevise outperforms AugDelete and vanilla
v1 models in both the ID classification and OOD detec-
tion. However, adding label smoothing in AugRevise will



Data Augmentaion AugDelete
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 ✗ 81.05 55.47 79.67 56.73 77.25
✓ 80.96 55.60 80.26 56.01 77.16

v1 + LS ✗ 80.35 58.06 78.44 60.88 77.78
✓ 80.81 55.89 79.67 58.17 77.93

v1 + mixup ✗ 77.57 73.10 72.68 78.65 79.69
✓ 80.46 62.21 77.81 64.60 79.75

v1 + RE ✗ 80.96 56.48 82.31 52.20 76.91
✓ 81.04 56.31 82.84 51.10 76.81

v1 + TA ✗ 81.92 55.78 82.91 50.57 78.78
✓ 81.93 55.84 82.51 51.03 78.62

v1+all data augs ✗ 78.34 71.64 74.85 71.46 79.89
✓ 80.89 62.21 80.33 56.96 80.03

v2 ✗ 78.44 74.01 72.39 76.96 81.19
✓ 82.31 56.06 77.87 60.96 81.17

Table 15. AugDelete for models trained with different data augmentations on CIFAR100.

Dataset Models Finetuning
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

ImageNet-1k ResNet50-v2
✗ 69.20 86.00 76.47 83.49 80.92

FC 78.69 70.05 87.47 56.18 80.31
Network 78.47 70.74 88.98 45.45 80.08

ImageNet-1k Swin-T-v2
✗ 75.66 80.76 84.80 67.81 81.59

FC 81.01 69.06 90.96 37.79 81.30
Network 77.58 72.76 87.42 51.26 80.45

Table 16. Comparing finetuning the fully connected (FC) layer and finetuning the whole network.

decrease the OOD performance in both near-OOD and far-
OOD detection, suggesting that label smoothing should be
removed in AugRevise.

8.9. OOD detection with Various Pretrained Net-
work Architectures

We apply AugDelete to pretrained models with different net-
work architectures including convolutional neural networks
(CNNs) and transformers. Table 24 presents the ID accuracy
and OOD performance with/without AugDelete. We see
that AugDelete improves the OOD detection of both CNNs
and transformers while maintaining ID accuracy. In this
paper, we focus on torchvision because it is widely used
in OOD research. Preliminary results on TIMM show our
findings do generalize (Table 23), but there are no baselines
for comparison because the most common OOD benchmark
(OpenOOD) uses mainly torchvision.

8.10. Comparison with various post-hoc OOD De-
tection methods.

We combine AugDelete into various post-hoc OOD detection
methods on Openood V1.5. Both logit-based and feature-
and-logit-based methods are considered for AugDelete. Note
that AugDelete has no effect on the feature-based method
since it does not change the features. Table 25 shows the
results with ResNet-v2, Swin-T-v2 and ViT-B-16 prerained
networks. More results concerning network architectures are
in the appendix. We can see that AugDelete can improve
both methods by a large margin since AugDelete fixes the
logits hurt by label smoothing and mixup.



Near-OOD Far-OOD ID ACC EpochsAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

ResNet50-v2 69.20 86.00 76.47 83.49 80.92 600
ResNet50-v2+Finetune 79.33 66.17 89.88 41.85 79.86 600+10

ResNet50-v2+Re-training 79.23 62.37 90.30 35.74 77.70 100
Table 17. Finetune/Re-training ResNet50-v2 models on ImageNet-1k with AugRevise.

Data Augmentaion Loss
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 LCE 87.52 61.32 91.10 41.68 95.06
v1 + mixup Lmix

CE 84.39 76.20 88.89 58.10 95.95
v1 + regmixup Lrmix

CE 89.19 53.81 93.18 32.93 96.27
v1 + mixup-AugRevise Lrvmix

CE 90.56 44.71 94.20 25.55 96.58

v1 LCE 81.05 55.47 79.67 56.73 77.25
v1 + mixup Lmix

CE 77.57 73.10 72.68 78.65 79.69
v1 + regmixup Lrmix

CE 82.22 56.53 82.40 54.80 80.43
v1 + mixup-AugRevise Lrvmix

CE 83.34 51.56 85.20 45.93 81.22

Table 18. The results of fixing mixup on CIFAR10/100. The top/bottom halves are for CIFAR10/CIFAR100, seperately.

Training Recipe Loss
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 LCE 82.90 59.76 91.11 34.04 86.37
v1+mixup Lmix

CE 80.74 67.81 87.25 47.82 86.87
v1+regmixup Lrmix

CE 82.85 61.58 91.10 34.48 87.58
v1+mixup-AugRevise Lrvmix

CE 83.88 54.26 91.57 29.91 87.28

Table 19. The results of fixing mixup on ImageNet200.

Training Recipe Loss mixup coefficients α
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1+regmixup Lrmix
CE 0.2 78.28 77.58 84.71 59.84 87.01

v1+regmixup Lrmix
CE 1 78.88 76.29 85.36 59.26 87.20

v1+regmixup Lrmix
CE 10 82.85 61.58 91.10 34.48 87.58

v1+mixup-AugRevise Lrvmix
CE 0.2 83.75 54.65 90.92 32.37 87.04

v1+mixup-AugRevise Lrvmix
CE 1 83.86 54.35 91.14 31.47 87.21

v1+mixup-AugRevise Lrvmix
CE 10 83.88 54.26 91.57 29.91 87.28

Table 20. The results of fixing mixup on ImageNet200.

8.11. Detailed Results of AugRevise for Training-
Time Model Enhancement

We train models from scratch with AugRevise on Ima-
geNet200/1k and CIFAR10/100 datasets, following the same
training setting as OpenoodV1.5. ResNet18 is adopted for
CIFAR10/100 and ImageNet200, while ResNet50 is for

ImageNet200. Note that AugRevise for ImageNet-1k is
trained 100 epochs as ResNet50-v1 instead of 600 epochs
as ResNet50-v2. We choose logit-based, feature-based, and
logit-and-feature-based OOD score functions for AugRevise.
Table 26 and 27 compares AugRevise with state-of-the-art
(SOTA) methods in Openood V1.5 Benchmark. AugRevise



Train Recipe
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

v1 82.90 59.76 91.11 34.04 86.37
v2∗ 78.92 72.84 86.64 52.10 86.74
v2∗+AugDelete 81.87 63.29 89.27 40.44 86.68
v2∗+AugRevise 84.07 54.02 91.70 29.41 87.67
v2∗+AugRevise +LS 83.88 54.64 90.47 33.10 87.33
v2 78.11 77.39 85.80 61.35 88.08
v2+AugDelete 82.79 62.83 89.91 41.54 88.03
v2+AugRevise 84.49 53.84 92.06 29.66 88.14

Table 21. Compare AugDelete and AugRevise on ImageNet200. For fair comparison, v2∗ is trained for 100 epochs as v1. v2 is trained for
200 epochs.

VIM NNGuide GEN EBO MLS
ResNet50-v2 57.01 65.77 82.46 52.88 72.84

ResNet50+AugDelete 83.10 77.54 83.10 81.83 83.08
ResNet50+AugRevise 84.78 87.17 84.87 84.84 84.77

Table 22. AUROC of AugDelete and AugRevise across different OOD functions on ImageNet-1k with ResNet50 backbone.

improves both logit-based and feature-based methods since it
improves both features and logits. AugRevise also improves
ID accuracy and outperforms comparing methods. Overall,
AugRevise outperforms both post-hoc and training-based
methods in ID and OOD.



VIM NNGuide GEN EBO MLS
RN50-a1 81.66 82.95 84.07 81.81 82.43

RN50-a1+AugDelete 88.93 86.11 89.55 89.60 88.14
Table 23. Applying AugDelete to ResNet50.a1 in1k in timm library. AugDelete can improve the AUROC of ResNet50.a1 in1k.

Pre-trianed Models
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

ResNet50-v1 76.46 67.84 89.58 38.20 76.18
ResNet50-v2 69.20 86.00 76.47 83.49 80.92
MobileNetv2-v1 72.01 73.01 88.68 38.54 71.91
MobileNetv2-v2 73.89 74.33 80.74 62.88 72.22
ResNetXt50-v1 78.49 67.73 89.37 40.64 77.64
ResNetXt50-v2 72.06 84.55 79.28 82.66 81.22
WideResNet50-v1 78.69 67.93 89.02 41.22 78.50
WideResNet50-v2 66.56 87.58 68.32 91.84 81.64
RegNet-v1 78.58 70.92 88.13 45.16 80.44
RegNet-v2 72.13 89.20 78.41 91.49 82.96
ConvNext-v2 76.44 74.10 84.58 53.83 83.59
Swin-T-v2 75.66 80.76 84.80 67.81 81.59
ViT-B-16-v2 68.30 92.25 83.54 79.23 81.14

ResNet50-v2 + AugDelete 78.69 70.05 87.47 56.18 80.31
MobileNetv2-v2 + AugDelete 75.45 69.93 83.63 56.23 70.24
ResNetXt50-v2 + AugDelete 80.27 69.48 88.64 50.59 80.92
WideResNet50-v2 + AugDelete 76.67 77.19 83.84 71.38 81.45
RegNet-v2 + AugDelete 76.74 84.57 87.79 66.05 82.86
ConvNext-v2 + AugDelete 79.41 67.19 88.88 45.69 82.98
Swin-T-v2 + AugDelete 81.01 69.06 90.96 37.79 81.30
VIT-B-16-v2 + AugDelete 79.83 69.84 91.87 30.31 81.00

Table 24. AugDelete w.r.t various pretrained Networks on ImageNet-1k. The top half is before AugDelete while the bottom half is after
AugDelete.



Pre-trianed Models Method AugDelete
Near-OOD Far-OOD

AUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓

ResNet50-v2

MLS ✗ 69.20 86.00 76.47 83.49
✓ 78.69 70.05 87.47 56.18

EBO ✗ 54.39 89.23 51.36 90.72
✓ 76.84 72.46 86.82 58.72

MSP ✗ 72.53 82.21 81.48 72.28
✓ 77.64 66.92 85.58 53.98

ASH ✗ 54.75 90.01 52.32 91.16
✓ 76.50 72.32 86.90 57.91

KNN ✗ 70.76 73.48 89.07 36.71
NNGuide ✗ 61.16 82.25 70.37 61.89

✓ 71.38 70.84 83.71 45.60

Swin-T-v2

MLS ✗ 75.66 80.76 84.80 67.81
✓ 81.01 69.06 90.96 37.79

EBO ✗ 73.23 83.31 81.32 75.59
✓ 80.78 71.74 91.40 38.32

MSP ✗ 76.75 71.06 86.30 49.16
✓ 78.88 64.08 88.28 43.68

ASH ✗ 67.91 85.86 71.93 82.68
✓ 78.46 76.89 89.30 45.75

KNN ✗ 71.62 71.76 89.37 34.12
NNGuide ✗ 67.92 84.99 85.36 50.77

✓ 71.95 83.48 90.07 42.44

ViT-B-16-v2

MLS ✗ 68.30 92.25 83.54 79.23
✓ 79.83 69.84 91.87 30.31

EBO ✗ 62.41 93.19 78.98 85.35
✓ 80.13 70.90 92.69 27.94

MSP ✗ 73.52 81.85 86.04 51.69
✓ 77.77 65.34 89.00 39.64

ASH ✗ 57.82 93.65 73.08 85.39
✓ 79.71 71.99 93.01 27.96

KNN ✗ 74.11 70.47 90.81 31.93
NNGuide ✗ 60.40 89.89 81.74 59.86

✓ 69.83 85.66 90.36 43.40

Table 25. AugDelete w.r.t various OOD scores on ImageNet-1k.



ID Dataset Method AugRevise
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

CIFAR10 MLS ✗ 87.52 61.32 91.10 41.67 95.06
✓ 92.78 30.37 95.28 20.16 96.73

EBO ✗ 87.58 61.32 91.21 41.70 95.06
✓ 92.86 30.43 95.46 20.11 96.73

MSP ✗ 88.03 48.18 90.73 31.72 95.06
✓ 92.44 28.62 94.56 19.59 96.73

ASH ✗ 87.54 61.23 91.13 41.60 95.06
✓ 92.82 30.42 95.35 20.11 96.73

KNN ✗ 90.64 33.99 92.96 24.28 95.06
✓ 93.69 27.46 96.22 16.20 96.73

NNGuide ✗ 83.54 78.57 86.95 65.86 95.06
✓ 92.83 32.41 95.60 20.48 96.73

CIFAR100 MLS ✗ 81.05 55.46 79.67 56.72 77.26
✓ 84.05 51.49 83.33 50.22 82.10

EBO ✗ 80.91 55.60 79.77 56.58 77.26
✓ 83.88 51.66 84.29 49.59 82.10

MSP ✗ 80.27 54.79 77.76 58.70 77.26
✓ 83.37 52.06 81.63 52.17 82.10

ASH ✗ 81.07 55.99 79.92 55.69 77.26
✓ 83.78 52.15 84.51 49.19 82.10

KNN ✗ 80.18 61.23 82.40 53.65 77.26
✓ 81.88 60.24 85.88 46.68 82.10

NNGuide ✗ 80.27 58.36 81.41 56.66 77.26
✓ 83.92 52.89 85.10 46.14 82.10

ImageNet200 MLS ✗ 82.90 59.76 91.11 34.04 86.37
✓ 84.07 54.02 91.70 29.41 87.67

EBO ✗ 82.50 60.22 90.86 34.86 86.37
✓ 83.68 54.49 91.85 29.66 87.67

MSP ✗ 83.34 54.83 90.13 35.43 86.37
✓ 84.09 53.91 91.69 29.38 87.67

ASH ✗ 82.76 59.82 91.63 32.68 86.37
✓ 83.94 53.82 92.68 26.85 87.67

KNN ✗ 81.59 58.26 91.49 31.15 86.37
✓ 81.34 56.45 92.65 26.88 87.67

NNGuide ✗ 82.54 63.10 93.11 30.70 86.37
✓ 84.34 54.15 94.29 20.98 87.67

ImageNet-1k MLS ✗ 76.46 67.84 89.58 38.20 76.18
✓ 79.23 62.37 90.30 35.74 77.70

EBO ✗ 75.89 68.56 89.47 38.40 76.18
✓ 78.96 62.59 90.72 34.57 77.70

MSP ✗ 76.02 65.67 85.23 51.47 76.18
✓ 79.25 62.36 90.31 35.75 77.70

ASH ✗ 76.41 66.85 91.52 32.39 76.18
✓ 79.34 61.09 91.93 30.91 77.70

KNN ✗ 71.10 70.87 90.18 34.13 76.18
✓ 72.60 69.82 92.52 28.67 77.70

NNGuide ✗ 78.80 63.89 94.56 25.73 76.18
✓ 80.90 59.92 93.44 27.35 77.70

Table 26. AugRevise w.r.t various OOD scores on CIFAR10/100 and ImageNet200/1k.



Dataset Methods
Near-OOD Far-OOD ID ACCAUROC FPR@95 AUROC FPR@95
↑ ↓ ↑ ↓ ↑

CIFAR10 T2FNorm+T2FNorm [31] 92.79 26.47 96.98 12.75 94.69
LogitNorm+MSP [40] 92.33 29.34 96.74 13.81 94.30
VOS+EBO [6] 87.70 57.03 90.83 40.43 94.31
NPOS+KNN [35] 89.78 32.64 94.07 20.59 —
CIDER+KNN [26] 90.71 32.11 94.71 20.72 —
MOS+MOS [17] 71.45 78.72 76.41 62.90 94.83
AugMix+MSP [14] 89.43 37.68 91.66 27.00 95.01
RegMixup+MSP [30] 87.47 48.78 90.25 36.30 95.75
AugRevise +MLS 92.78 30.37 95.28 20.16 96.73
AugRevise +KNN 93.69 27.46 96.22 16.20 96.73
AugRevise +NNGuide 92.83 32.41 95.60 20.48 96.73

CIFAR100 T2FNorm+T2FNorm [31] 79.84 58.47 82.73 51.25 76.43
LogitNorm+MSP [40] 78.47 62.89 81.53 53.61 76.34
VOS+EBO [6] 80.93 55.56 81.32 53.70 77.20
NPOS+KNN [35] 78.35 63.35 82.29 51.13 —
CIDER+MSP [26] 73.10 72.02 80.49 54.22 —
MOS+MOS [17] 80.40 56.05 80.17 57.28 76.98
AugMix+MSP [14] 79.36 56.30 77.18 58.36 76.45
RegMixup+MSP [30] 80.83 56.12 79.04 57.50 79.32
AugRevise +MLS 84.05 51.49 83.33 50.22 82.10
AugRevise +KNN 81.88 60.24 85.88 46.68 82.10
AugRevise +NNGuide 83.92 52.89 85.10 46.14 82.10

ImageNet200 T2FNorm+T2FNorm [31] 83.00 55.01 93.55 25.73 86.87
LogitNorm+MSP [40] 82.66 54.46 93.04 26.11 86.04
VOS+EBO [6] 82.51 59.89 91.00 34.01 86.23
NPOS+KNN [35] 79.40 62.09 94.49 21.76 —
CIDER+KNN [26] 80.58 60.10 90.66 30.17 —
MOS+MOS [17] 69.84 71.60 80.46 51.56 85.60
AugMix+MSP [14] 83.49 54.97 90.68 33.42 87.01
RegMixup+MSP [30] 84.13 68.92 90.81 30.31 87.25
AugRevise +MLS 84.07 54.02 91.70 29.41 87.67
AugRevise +KNN 81.34 56.45 92.65 26.88 87.67
AugRevise +NNGuide 84.34 54.15 94.29 20.98 87.67

ImageNet-1k T2FNorm+T2FNorm [31] 73.08 69.14 91.92 31.24 76.76
LogitNorm+MSP [40] 74.62 68.56 91.54 31.32 76.45
VOS+EBO [6] — — — — —
NPOS+KNN [35] — — — — —
CIDER+KNN [26] 68.97 71.69 92.18 28.69 —
MOS+MOS [17] 72.85 76.31 82.75 52.63 72.81
AugMix+MSP [14] 77.49 64.45 86.67 46.94 77.63
RegMixup+MSP [30] 77.04 65.33 86.31 48.91 76.68
AugRevise +MLS 79.23 62.37 90.30 35.74 77.70
AugRevise +KNN 72.60 69.82 92.52 28.67 77.70
AugRevise +NNGuide 80.90 59.92 93.44 27.35 77.70

Table 27. Comapre AugRevise with training-based OOD detection methods on CIFAR10/100 and ImageNet200/1k.



9. Derivation of Proposition 4.1
We use i∗ denote the index of the maximal logit, ∆v[i∗] to denote increment of the maximal logit after one-step gradient
descent, LCE , Lls

CE and Lmix
CE are defined as equation 3,7, and 9.

The derivation contains 2 steps. First, we illustrate the relationship between the one-step update of the maximal logit
(∆v[i∗]) and the gradient. Then, we compute the difference between gradients. With the results of the previous steps, we
finally prove the proposition.

9.1. Relating the Increment of the Maximal Logit to Gradients
We follow the loss and network definition as equation 3 and 2. Let θ denote the parameter of the feature extraction network G,
and η denote the learning rate. When applying one-step gradient descent, the network parameters W, b, and θ are directly
updated, then the update of the network parameters will be reflected on the logits. According to the chain rule, the total
derivative ∆v[i∗] of the maximal logits v[i∗] is:

∆v[i∗] = fT∆W[i∗, :] +W[i∗, :]T∆f +∆b[i∗]

= fT∆W[i∗, :] +W[i∗, :]T (
∂f

∂θ
)T∆θ +∆b[i∗]

= fT (−η
∂Lce

∂W[i∗, :]
) +W[i∗, :]T (

∂f

∂θ
)T (−η

∂Lce

∂θ
) + (−η

∂Lce

∂b[i∗]
)

= −η{fT ∂v[i∗]

∂W[i∗, :]

∂Lce

∂v[i∗]
+W[i∗, :]T (

∂f

∂θ
)T (

∂f

∂θ

C∑
k=1

∂v[k]

∂f

∂Lce

∂v[k]
) +

∂v[i∗]

∂b[i∗]

∂Lce

∂v[i∗]
}

= −η{(fTf + 1)
∂Lce

∂v[i∗]
+

C∑
k=1

W[i∗, :]T (
∂f

∂θ
)T (

∂f

∂θ
)W[k, :]

∂Lce

∂v[k]
)}

≈ −η{fTf + 1 +W[i∗, :]T (
∂f

∂θ
)T (

∂f

∂θ
)W[i∗, :]} ∂Lce

∂v[i∗]

∝ − ∂Lce

∂v[i∗]

(19)

where “[j]” denotes take the j-th element of a vector, and “[k, :]” denotes take the k-th row of a matrix.
Remark: During training, the gradient of the maximal logits tends to be much larger than that of the other logits, i.e.
| ∂Lce

∂v[i∗] | >> | ∂Lce

∂v[k] |(k ̸= i∗).
According to equation 19, we have

∆v[i∗]−∆vls/mix[i∗] ≈ η(fTf + 1)(
∂L

ls/mix
ce

∂v[i∗]
− ∂Lce

∂v[i∗]
)

∝ ∂L
ls/mix
ce

∂v[i∗]
− ∂Lce

∂v[i∗]

(20)

9.2. Difference of Gradiants
For cross entropy loss Lce defined in equation 3, we can compute the partial derivative w.r.t the j-th logits v[j] as:

∂Lce

∂v
[j] = −y[j] + p[j], p[i] =

ev[j]∑C
k=1 e

v[k]
, (21)

Similarly, the gradient for label smoothing w.r.t the j-th logits v[j] is

∂Lls
ce

∂v
[j] = −yls[j] + p[j], (22)

compare equation 21 and 22, we can get the gradient difference

∂Lls
ce

∂v
[j]− ∂Lce

∂v
[j] = y[j]− yls[j], (23)



For mixup, we adopt the first-order approximation derived by [49], i.e.,

Lmix
ce ≈ Lce + (y − σ(v))Tv (24)

With equation 24, we can compute the gradient difference ∂Lmix
ce

∂v[j] − ∂Lce

∂v[j] :

∂Lmix
ce

∂v
[j]− ∂Lce

∂v
[j] = (y[j]− p[j]) + p[j]

C∑
k=1

p[k](v[k]− v[j]) (25)

Now we analyze the gradient of the maximal logit v[i∗]. Take j = i∗ into equation 23 and combining the definition of label
smoothing in equation 7, we have

∂Lls
ce

∂v
[i∗]− ∂Lce

∂v
[i∗] = β(1− 1

C
) > 0, (26)

where β is the label smoothing coefficient and C is the number of classes. Similarly, take j = i∗ into equation 25, we have

∂Lmix
ce

∂v
[i∗]− ∂Lce

∂v
[i∗] = (1− p[i∗]) + p[i∗]

C∑
k=1

p[k](v[k]− v[i∗])

=

C∑
k=1,k ̸=i∗

p[k] +

C∑
k=1,k ̸=i∗

p[i∗]p[k](v[k]− v[i∗])

=

C∑
k=1,k ̸=i∗

p[k] + p[i∗]p[k](v[k]− v[i∗])

=

C∑
k=1,k ̸=i∗

p[k] + p[i∗]p[k] log(
p[k]

p[i∗]
)

=

C∑
k=1,k ̸=i∗

p[k]{1 + p[i∗] log(
p[k]

p[i∗]
)} ≥ 0

(27)

Remark: The informative gradients come from the wrong predicted logits, i.e., p[k] ≥ p[i∗]. When p[k] ≥ p[i∗] holds,
p[k]{1 + p[i∗] log( p[k]

p[i∗] )} is large than 0. On the contrary, for the correct predicted logits, p[k] << p[i∗], then the term

p[k]{1 + p[i∗] log( p[k]
p[i∗] )} is close to 0.

Combining equation 20, 26, and 27, we can reach the conclusion:

∆v[i∗]−∆vls/mix[i∗] ∝ ∂L
ls/mix
ce

∂v[i∗]
− ∂Lce

∂v[i∗]
≥ 0. (28)

10. Derivation of Proposition 4.2
Let si (so) denote the maximal logits of ID (OOD) samples, saugi (saugo ) denote that of ID (OOD) samples after augmentations,
ri =

si−saug
i

si
(ro =

so−saug
o

so
) denote the relative decrement of saugi (saugo ), pi(x) (po(x)) denote the probability density

function of si (so) at the value of x, and paugi (x) (paugo (x)) denote that of saugi (saugo ) at the value of x. Assume si is
non-negative.

We can connect si (so) and saugi (saugo ) by ri (ro) as

saugi = si · (1− ri), saugo = so · (1− ro); (29)

and also connect the probability density function as

paugi (x) =
1

(1− ri)
pi(

x

1− ri
), paugo (x) =

1

(1− ro)
po(

x

1− ro
). (30)



We can derive the probability Prob(si ≥ so) as:

Prob(si ≥ so) =

∫
+∞

0

Prob(so < x) · pi(x)dx

=

∫
+∞

0

pi(x)dx

∫
x

−∞
po(y)dy

=

∫
+∞

0

dx

∫
x

−∞
pi(x)po(y)dy

(31)

Similarly, we can derive the probability Prob(saugi ≥ saugo ) as:

Prob(saugi ≥ saugo ) =

∫
+∞

0

dx

∫
x

−∞
paugi (x)paugo (y)dy (32)

Combining eq. 30 and 31, we have

Prob(saugi ≥ saugo ) =

∫
+∞

0

dx

∫
x

−∞

1

(1− ri)
pi(

x

1− ri
) · 1

(1− ro)
po(

y

1− ro
)dy

=

∫
+∞

0

dx
′
∫

1−ri
1−ro

x

−∞
pi(x

′
) · po(y

′
)dy

′
(Let x′ =

x

1− ri
and y

′
=

y

1− ro
)

(33)

Combine eq. 31 and 33, we have

δP = Prob(si ≥ so)− Prob(saugi ≥ saugo )

=

∫
+∞

0

dx

∫
x

1−ri
1−ro

x

pi(x)po(y)dy
(34)

If 1 > ri > ro, we have 0 < 1−ri
1−ro

< 1 and considering the probability density function is always non-negative (pi(x) ≥ 0
and po(y) ≥ 0), we can derive from eq. 34 that:

δP =

∫
+∞

0

dx

∫
x

1−ri
1−ro

x

pi(x)po(y)dy

≥
∫

+∞

0

pi(x)dx · (1− 1− ri
1− ro

)x ·min 1−ri
1−ro

x≤y≤x
(po(y))

≥ 0

(35)

Then we prove δP monotonically increases w.r.t ri−ro
1−ro

from the perspective of function derivatives. Let t = ri−ro
1−ro

, we can
derive from eq. 34:

d{δP}
dt

=
d{( 1−ri

1−ro
)x}

dt
· d{δP}
d{( 1−ri

1−ro
)x}

=
d{( 1−ri

1−ro
)x}

dt
· {
∫

+∞

0

pi(x)dx
d

d{( 1−ri
1−ro

)x}

∫
x

1−ri
1−ro

x

po(y)dy}

= (−x) · {−
∫

+∞

0

pi(x)po(
1− ri
1− ro

x)dx}

= x ·
∫

+∞

0

pi(x)po(
1− ri
1− ro

x)dx

≥ 0.

(36)

As d{δP}
dt ≥ 0, we have δP monotonically increases w.r.t ri−ro

1−ro
.

Proof Ends.



Figure 7. The distribution of maximal logits si on ImageNet200 train (left) and test (right) set. It can be observed that si is always
non-negative.

Remark: i) The assumption si ≥ 0 is easily satisfied. In Figure 7. We visualize the distribution of maximal logits si on the
ImageNet200. It can be observed that si ≥ 0 holds.
ii) In the proof, we simplified ri and ro to be constant values. The proved results can be easily extended to the case where
ri and ro are not constant values. Specifically, we can prove: Prob(si > so) ≥ Prob{(1 − rmin

i )si > (1 − rmax
o )so} ≥

Prob(saugi > saugo ), where rmin
i = min ri and rmax

o = max ro.
First, we have 1 ≥ ri > ro. For some specific ri/ro, we could have rmin

i > rmax
o . Then, from the original proof, we have:

Prob(si > so) ≥ Prob{(1− rmin
i )si > (1− rmax

o )so} (37)

Then, we want to prove that Prob{(1− rmin
i )si > (1− rmax

o )so} ≥ Prob(saugi > saugo ). We have:

Prob{(1− rmin
i )si > (1− rmax

o )so} = Prob{(1− rmin
i )si > (1− rmax

o )so|so < 0} · Prob(so < 0)

+ Prob{(1− rmin
i )si > (1− rmax

o )so|so ≥ 0} · Prob(so ≥ 0)

= Prob(so < 0) + Prob{(1− rmin
i )si > (1− rmax

o )so|so ≥ 0} · Prob(so ≥ 0)

≥ Prob(so < 0) + Prob{(1− ri)si > (1− rmax
o )so|so ≥ 0} · Prob(so ≥ 0)

≥ Prob(so < 0) + Prob{(1− ri)si > (1− ro)so|so ≥ 0} · Prob(so ≥ 0)

= Prob{(1− ri)si > (1− ro)so|so < 0} · Prob(so < 0)

+ Prob{(1− ri)si > (1− ro)so|so ≥ 0} · Prob(so ≥ 0)

= Prob{(1− ri)si > (1− ro)so}
= Prob(saugi > saugo )

(38)

Combining eq. 37 and 38, we have Prob(si > so) ≥ Prob(saugi > saugo ) for inconstant ri and ro satisfying 1 ≥ ri > ro.
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