Efficient Track Anything

Supplementary Material

In this supplement, we provide more results to demon-
strate competing capabilities of our EfficientTAM for video
object segmentation and track anything.

1. Additional Related Work

1.1. Vision Transformers

Combining ViT with convolutions has been explored for
fast hybrid models such as MobileViT [13], LeViT [7],
EfficientFormer[1 1], Next-ViT[10], Tiny-ViT[ 18], Castling-
ViT[21], EfficientViT [12], and MobileNetv4 [14]. This
line of progression towards building efficient ViTs is orthog-
onal to our EfficientTAM work towards building efficient
video object segmentation. Following SAM [9] and Effi-
cientSAMs [20], we are pursuing plain ViT backbones for
efficient video object segmentation and track anything tasks.

1.2. Efficient Attention

Local windowed attention has been applied in [2, 22] for
reducing the complexity of self-attention. In [8, 16], a lin-
ear dot product approximation is proposed to linearize the
softmax matrix in self-attention by heuristically separating
keys and queries, which can be viewed as a content only
lambda layer [1]. In [4], the Performer model uses random
features to approximate self-attention, achieving linear time
and memory cost. Nystromformer in [19] makes use of the
Nystrom method to approximate self-attention with a linear
cost. Linformer [17] shows that self-attention is low-rank,
which can be approximated by learning linear projection
matrices for the keys and values. The approach of [12, 21]
leverages the associative property of matrix multiplication
for efficient attentions in vision transformers. This direction
has shown success and has achieved decent performance on
vision tasks. However, it underperforms when applying to
memory cross-attention without considering the underlying
structure of memory tokens. We take explicit advantage
of the structure of the memory spatial tokens for efficient
cross-attention.

2. Efficient Cross-Attention

Assume K is a coarser representation of memory spatial
keys, K, a good surrogate of K, € R™"*? with the same
size, K, € R™*? from K, € R?"*4 ig constructed by
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The concatenation of coarse spatial tokens with object
pointer tokens is, K = [Ky; K] € R"P)*d and V' =
[Vs; ‘/p] € R(n+P)><d.

Lemma 1. For the coarse memory tokens, KandV, queries
Q € RY%4 we have,
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Proof. Denote Q = [q1;...;qz], where ¢; € R¥4. The
cross-attention matrix, C = softmax (%) V e RLxd,

The softmax matrix S = softmax (L\]/_(;) € REX(n+P) cap

be formulated as,
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where Dgs is a L x L diagonal matrix, which normalizes each
row of the S matrix such that the row entries sum up to 1,
and e(+) denotes exp(+). For each row of the cross-attention
matrix, we have,
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Object Pointers | MOSE dev  DAVIS 2017 val  SA-V test
No 75.8 89.0 72.1
Yes 76.5 89.2 74.5

Table 1. Ablation study on the design of memory cross-attention in
EfficientTAM.

Pooling MOSE dev  DAVIS 2017 val ~ SA-V test
Memory tokens 74.5 87.6 71.7
Spatial tokens only 76.5 88.6 74.0

Table 2. Ablation study on taking care of the memory token struc-
ture for efficient cross-attention in EfficientTAM.

Ours i Linear Attention

Figure 1. Attention score map.

Cross-Attention | MOSE dev  DAVIS 2017 val  SA-V test
local-windowed 75.4 88.6 72.4
pooling 76.5 88.6 74.0

Table 3. Comparing with local windowed attention.

where Ds,, is the i diagonal element of the matrix
Ds. Note that the right side of Eq. (2) is the i row of
softmax (A) V. It concludes the proof. O

3. Ablation Studies

Impact of the object pointer tokens. In Tab. 1, we ablate
the cross-attention with or without the object pointer tokens.
Structure of memory tokens. In Tab. 2, we ablate the
impact of memory tokens for efficient cross-attention in the
memory module.

Linear cross-attention. Local context is an important com-
ponent for high-quality segmentation [6]. In Fig. 1, we can
see that our attention focuses more on local context while the
ability of linear attention to capture local context is reduced.
This is also consistent with a recent finding that current linear
attentions compromise Softmax attention’s ability for local
modeling [5]. Therefore, leveraging the underlying token
structure for efficient cross-attention is more effective.
Local windowed cross-attention. We adapt local windowed
attention for efficient cross-attention by partitioning input
tokens into 4 non-overlapping segments (windows), within
which we conduct cross-attention. In Tab. 3, we find that
local windowed cross-attention underperforms our proposed
efficient cross-attention using averaging pooling, 72.4 vs
74.0 J &F on SA-V test dataset. These results demonstrate
the effectiveness of our efficient cross-attention by leverag-
ing the strong locality of spatial memory tokens.

Efficient cross-attention. We observe that Eq. (6) in the
main paper is close to original cross-attention, visualized in
Fig. 2. This suggests that Eq. (6) can serve as a surrogate of
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Figure 2. Visualization of the difference between original cross-
attention and efficient cross-attention of Eq. (6).

Figure 3. Visualization results on challenging examples. The
segmented objects, e.g., toy ball, sheep, monkey, sheep, and croquet
ball, are colored in orange.

the original cross-attention.

4. Qualitative Evaluation

We provide more qualitative results of EfficientTAMs for
video and image instance segmentation. Fig. 3 shows chal-
lenging video examples with small objects and objects with
occlusions. We find that our EfficientTAM is able to track
small objects and objects with occlusions in Fig. 3. In Fig. 3
(bottom), we also present one interesting failure case of track-
ing an object after long occlusions (> 5 seconds). To address
this limitation, long occlusion track anything can be one in-
teresting future direction for performance improvement. For
image segmentation, we also observe that our EfficientTAM
can generate quality image segmentation results as SAM and
SAM 2, shown in Fig. 4. We report the predicted masks with
two types of prompts, point and box, and also segment every-
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Figure 4. Visualization results on image segmentation with point-
prompt, box-prompt, and segment everything for SAM, Effi-
cientSAM, SAM 2, and our EfficientTAM model.

thing results. These results suggest that our EfficientTAMs
have similar abilities to SAM 2, while EfficientTAM is more
efficient.

5. Discussion

Efficient training techniques. We followed SAM 2[15] for
training efficient track anything models using 256 A100-80G
GPUs. In our experiments, we note that GPU resources can
be reduced by applying efficient training techniques. We
find that progressive training can help reduce GPU resources
significantly (i.e., 4x fewer GPUs) in our experiments by
first training the model on lower resolution, 512 x 512, and
then continuing training on higher resolution, 1024 x 1024.
Latency-sensitive mobile VOS applications. There is an
increasing demand for online video editing tool, which has
many use cases such as live streaming [3]. Immediate edit-
ing response to interesting objects in streaming frames is
necessary for providing a decent online video editing tool.
Mobile VOS model is capable of tracking interesting objects
across streaming frames, which can serve as an important
component of online video editing tool.
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