
GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters
for Autoregressive Image Generation

Supplementary Material

A. Limitations and Future Work
This study primarily focuses on scaling tokenizers for class-
conditional image generation. While we have demon-
strated the effectiveness of GigaTok for downstream class-
conditional generation, expanding the scope to include text-
conditional image generation or video generation remains
an open avenue for future work. Additionally, unlike CNN-
based 2D tokenizers, 1D Transformer-based tokenizers are
not directly applicable to multiple resolutions without addi-
tional training adjustments. This challenge presents an im-
portant direction for further exploration. Besides scaling the
model sizes of tokenizers, the effect of scaling training data,
codebook dimension and codebook size for downstream au-
toregressive generation are left for future research.

B. Configurations for AR models

Size Params. Blocks Heads Dim.

B 111M 12 12 768
L 343M 24 16 1024

XL 775M 36 20 1280
XXL 1.4B 48 24 1536

Table 1. Architectures of the LLamaGen models in our exper-
iments.

AR model training. We scale up the training of down-
stream Llama-style [19, 21] AR models to compare genera-
tion performance with other models. For model training, we
use WSD learning rate scheduler [6, 8] with 1× 10−4 base
learning rate, 0.2 decay ratio and 1 epoch warm-up. We do
not use AdaLN [17, 20] as it is specific for class-conditional
generation. We use a batch size of 256 for training the B, L
and XL models and a 512 batch size for training the XXL
model. Our AR models are trained for 300 epochs on the
256× 256 ImageNet training set.
CFG for gFID. Since gFID of GPT models can be largely
affected by classifier free guidance (CFG) [18, 19] and of-
ten has an optimal CFG [19], for fair comparison, we search
the optimal CFG using zero-order search with a step of 0.25
and use the lowest gFID as the final value. For AR Prob-
ing, we use constant CFG scheduling for simplicity. For
system-level comparison, we use a step function for CFG
scheduling inspired by [11]. Specifically, the AR models
predict the first 18% tokens without CFG, i.e., CFG = 1
for better diversity, and use CFG for the remaining tokens
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Figure 1. The architecture of GigaTok with Q-Former.

2! = (1 + 2") + 2# +⋯ + 2! $ #

An 1D token sequence with 2! length can be initialized with 𝐿 levels from a 2D feature map

Avg Pooling
for Each Region

Level 0 Level 1 Level 2 Level 3

×2
Flatten and 

Concatenate

2D Input Features from
the CNN Encoder

Figure 2. Initialization of 1D queries in Q-Former modules.

for better visual quality. Interestingly, we find that the 1.4B
LlamaGen model achieves the best gFID without CFG.

C. Detailed GigaTok Implementation
Please refer to Tab. 2 for training details.
Q-Fomrer in GigaTok. GigaTok utilizes Q-Former [2, 12]
to build 1D tokenizers, as shown in Fig. 1. For Q-Former
encoder in GigaTok, we initialize the 1D queries initial-
ized from the 2D input features of the CNN encoder using
a multi-level average pooling strategy, as shown in Fig. 2.
Specifically, for the same 2D input features, we spatially di-
vide them with different granularity at different levels, and
perform average pooling for every divided region at each
level. The pooled features are flattened and concatenated
from level 0 to the last level. Therefore, a 1D token se-
quence with 2L length can be initialized with L levels from
2D input features. At the decoding stage, the 2D queries are
all initialized from the first 1D latent feature.
Entropy Loss for VQ Tokenizers. While entropy loss [23,



Configuration S-S S-B S-L B-L XL-XXL

Q-Former Encoder depth 6 6 6 12 36
Q-Former Encoder heads 8 8 8 12 20
Q-Former Encoder dim. 512 512 512 768 1280
Q-Former Decoder depth 6 12 24 24 48
Q-Former Decoder heads. 8 12 16 16 24
Q-Former Decoder dim. 512 768 1024 1024 1536
Params (M) 136 232 533 622 2896

Codebook size 16384
Codebook dimension 8
#Tokens 256

Training epochs 100 200 200 200 300
Batch size 128 128 256 256 256
Alignment Layer l 3
Learning rate schedule Cosine Decay
Base learning rate 1× 10−4

Minimum learning rate 1× 10−5

LR warm-up iterations 0 0 0 0 5000
Optimizer AdamW[14]
Opt. momentum β1 = 0.9, β2 = 0.95
Entropy Loss weight 0 0 0 0 5× 10−3

Table 2. GigaTok configuration and default training details

24] is discussed for LFQ [24], its application to VQ tok-
enizers is less commonly explained. We provide a detailed
derivation of the entropy loss specifically for VQ tokenizers.
Mathematically, for quantization process from continuous
vector z ∈ RD to quantized vector ẑ = ci ∈ RD where ci
is the i-th codebook vector from codebook C ∈ RN×D, we
assume this process is statistical and follows the following
distribution:

p(ẑ = ci|z) ≜ softmax(−l2(z,C))[i] (1)

where l2(z,C) ∈ RN is the L2 distance between z and all
the codebook vectors. Then, minimization of the quantiza-
tion error can be partially achieved by minimizing the ex-
pectation of entropy Ez [H(ẑ|z)], which can be understood
as maximizing the prediction confidence for p(ẑ|z). To en-
courage higher codebook utilization, we aim to make the
average appearance probability of codebook vectors more
uniform. This is achieved by maximizing the entropy H(ẑ),
Therefore, the optimization of the two entropy terms leads
to the final entropy loss equation:

Lentropy = Ez [H(ẑ|z)]−H(ẑ) (2)

In practice, to calculate H(ẑ), we estimate p(ẑ = ci) by
p(ẑ = ci) = Ez [p(ẑ = ci|z)]. Note that entropy loss is not
our contribution. We only provide a detailed definition of
entropy loss in VQ scenarios for better understanding.

Additional implementation details. To stabilize the train-
ing of our tokenizer with a hybrid architecture, we initially
use a shortcut feature reconstruction trick at the first 15k it-
erations of the tokenizer training. But we later found that
this trick can be replaced with a simple 1-epoch learning
rate warmup combined with entropy loss [4, 24]. Specifi-
cally for this trick, we additionally give the output feature of
the CNN encoder to the CNN decoder directly to be trained
for reconstruction, and also align the output feature of the
Transformer decoder to the output feature of the CNN en-
coder, besides the original training objectives. Note that
this strategy is complex and can even hinder performance
for XL-XXL tokenizers. We recommend using the learning
rate warmup combined with entropy loss [4, 24] instead, for
both XL-XXL tokenizer and the smaller ones. Additionally,
we utilize the rotation trick [5] for all tokenizers, though we
observe its effect on performance to be limited for our tok-
enizer. The implementation of the semantic regularization
is partially inspired by REPA [26].

D. Full Evaluation Results and Analysis
Here we present the full evaluation results for the tokenizers
and downstream AR models, as summarized in Tab. 3. We
observe that scaling up visual tokenizers consistently im-
proves the reconstruction quality across multiple metrics.
Interestingly, for the 1.4B AR model, the lowest gFID is
obtained without applying any CFG. This phenomenon is



Tokenizer Param. rFID↓ LPIPS↓ PSNR↑ SSIM↑ AR Model Param. gFID↓ Acc.↑ IS↑ Precision↑ Recall↑

LlamaGen-Tok. [19] 72M 2.19 - 20.79 0.675 LlamaGen-B [19] 111M 5.46 - 193.61 0.83 0.45

GigaTok-S-S 136M 1.01 0.2226 20.74 0.670 LlamaGen-B (1d) [19] 111M 4.05 62.6 240.61 0.81 0.51
GigaTok-S-B 232M 0.89 0.2121 20.93 0.677 LlamaGen-B (1d) [19] 111M 3.83 62.9 233.31 0.83 0.51

GigaTok-B-L 622M 0.81 0.2059 21.21 0.685
LlamaGen-B (1d) [19] 111M 3.26 67.6 221.02 0.81 0.56

LlamaGen-XXL (1d) [19] 1.4B 2.03⋆ 69.4 238.52 0.80 0.63
GigaTok-B-L 622M 0.51‡ 0.206 21.32 0.691 LlamaGen-B (1d) [19] 111M 3.33 67.7 265.43 0.80 0.56

GigaTok-XL-XXL 2.9B 0.79 0.1947 21.65 0.699
LlamaGen-B (1d) [19] 111M 3.15 72.0 224.28 0.82 0.55

LlamaGen-XXL (1d) [19] 1.4B 1.98⋆ 74.0 256.76 0.81 0.62

Table 3. Full results for our tokenizers and AR models on ImageNet 256×256. For gFID, we present the lowest value between w/ or
w/o CFG scenarios. ‡: Using frozen DINO [3] for discriminator, which largely improves rFID. ⋆: Without classifier-free-guidance.

also observed in the concurrent work FlexTok [1], despite
significant differences between GigaTok and FlexTok. We
hypothesize that semantic regularization might be the pri-
mary contributing factor for this phenomenon.
Discussion on Scaling and Enhancing the Discriminator.
Recently, VAR [20], ImageFolder [13], and the concurrent
work UniTok [15] have begun leveraging DINO-based dis-
criminators [3, 16] to enhance tokenizer training, achieving
impressive improvements in rFID scores. We have also ex-
perimented with the same DINO discriminator configura-
tion as VAR. Our results indicate that although rFID scores
improve, the downstream generation quality improvements
are less significant, as detailed in Tab. 3. Furthermore, when
applying the DINO discriminator to XL-XXL tokenizers,
we observed that adversarial training frequently encoun-
ters instability. Specifically, a strong discriminator quickly
learns to distinguish reconstructed samples, diminishing the
benefits of adversarial training and leading to blurry arti-
facts. We leave further exploration of discriminator scaling
and enhancement strategies for future work.

E. Training Tokenizers for More Iterations
While we largely resolve the reconstruction vs. generation
dilemma regarding tokenizer model scaling, this challenge
persists for tokenizer training duration scaling. To illus-
trate this phenomenon, we train five S-S tokenizers ranging
from 40 to 120 epochs using a cosine learning rate sched-
uler, as detailed in Tab. 2. The results are presented in Fig. 3.

When extending tokenizer training iterations, recon-
struction quality consistently improves. However, down-
stream generation quality initially improves but subse-
quently degrades with further increases in tokenizer training
duration. Additionally, the validation loss of AR probing
continuously rises with longer tokenizer training, regardless
of semantic regularization. This trend suggests an increas-
ing complexity in the tokenizer’s latent space as the training
duration extends.

We hypothesize that data scaling may alleviate this is-
sue, and leave it for future exploration. In practice, allo-

cating computational resources toward model scaling rather
than extended training duration may yield better tokenizer
performance.

F. Linear Probing Accuracy of Tokenizers

We show that the linear probing accuracy of the tokenizer
encoders may not necessarily indicate the performance of
downstream AR models. We utilize the intermediate check-
points during the training of B-L and XL-XXL tokenizers
for evaluation. As shown in Fig. 4, the XL-XXL tokenizer
encoder presents an overfitting trend in terms of tokenizer
encoder linear probing accuracy. However, this overfitting
trend is not reflected in AR Probing linear probing accu-
racy or gFID. Therefore, the linear probing accuracy of the
tokenizer encoders may not be a good indicator of down-
stream model performance. Similarly, a concurrent work
UniTok [15], also points out that the performance of the tok-
enizer encoder in terms of zero-shot ImageNet classification
accuracy may not necessarily reflect the visual understand-
ing ability of downstream LLMs trained on the tokenizer.

The abnormality for large tokenizers reveals that the lin-
ear probing accuracy of the tokenizer is not necessarily a
good indicator for downstream generation models. Since
we care more about the representation learning for down-
stream models than for the tokenizers, using AR Probing as
a direct evaluating method is better than indirect tokenizer
linear probing accuracy.

G. More Discussions About Related Work

TiTok [25] explores the use of 1D Transformer-based tok-
enizers under a high compression rate setting. TiTok sem-
inally explores the model scaling of visual tokenizers and
uses larger tokenizers for higher compression rate. How-
ever, the reconstruction vs. generation dilemma for scaling
tokenizers is not solved in TiTok. As a result, the best gener-
ation model in TiTok is still trained on its smallest tokenizer
variant.
ViTok [7] is a concurrent work which has explored the ef-
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Figure 3. Training duration scaling trends of tokenizers for reconstruction, downstream generation and representation quality with
and without semantic regularization. Note that in the last two figures, the red and blue curves correspond to different scales on the y-axis.
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Figure 4. The linear probing accuracy of tokenizer encoders
does not necessarily reflect downstream model performance.
As the training proceeds, the XL-XXL tokenizer encoder presents
an overfitting trend measured by linear probing accuracy, but
downstream model performances consistently improve.

fect of model scaling for VAE [9]. ViTok evaluates its VAE
models in terms of both reconstruction and downstream dif-
fusion generation performance. While having a very differ-
ent setting from GigaTok, ViTok similarly finds that asym-
metric design is better for VAEs. While ViTok suggests that
small encoders are optimal, we point out that in our setting
scaling encoders is also beneficial. Notably, the reconstruc-
tion vs. generation dilemma for scaling visual tokenizers is
not solved in ViTok. We hypothesize that adding semantic
regularization may similarly help solve the tokenizer scal-
ing dilemma for VAEs, but leave it for future study.
MAGVIT-v2 [24] introduces LFQ to enhance discrete tok-
enizers. It also introduces the entropy penalty for tokenizer
training, which is shown to be important for training large-
scale tokenizers in our work. Instead of tokenizer model
scaling, MAGVIT-v2 focuses more on scaling the codebook
size of tokenizers. While codebook dimension and code-
book size are important bottlenecks for visual tokenizers,
we point out that model size scaling is also an important
way for improving visual tokenizers.
ImageFolder [13] utilizes two branches for image encod-
ing to handle high-level semantic information and low-level
visual details respectively. It seminally utilizes semantic
alignment to enhance the learned representation of tokeniz-

ers.
VA-VAE [22] tames the reconstruction vs. generation
dilemma in increasing latent dimensions for continuous
VAE [9, 10]. VA-VAE improves the reconstruction-
generation Pareto Frontier by introducing vision foundation
model alignment loss. In contrast, we seek continuous im-
provements in both reconstruction and generation by scal-
ing tokenizers. Semantic regularization serves different pur-
poses in the two works.



References
[1] Roman Bachmann, Jesse Allardice, David Mizrahi, Enrico
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