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The organization of supplementary material is as fol-
lows: Section A introduces the concept replacement method
based on additional concept search sets. Section B illus-
trates the optimization of predictions before and after inter-
vention within an interpretable CBM, along with an analysis
of its approximation to a black-box model for generaliza-
tion. Also, the change in black-box classification accuracy
for non-intervened classes before and after the intervention
is reported. Section C details an intervention-based con-
cept masking experiment for vision-related tasks. Sections
D through G provide further experimental details and dis-
cussions. Finally, Section H presents additional visualiza-
tions of intervention explanations. To address the concept
bottleneck limitations.

A. Concept Replacement

It is also noteworthy that simply deleting concepts may not
resolve classification errors caused by conceptual bottle-
neck limitations. To address this, we propose a concept re-
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placement method that leverages a search set of additional
concepts.

The framework of the replacement method is illustrated
in Figure . It begins by identifying concepts that require
intervention within each confusion class through concept
intervention. These concepts are then ranked based on their
frequency of occurrence, and the top ¢ most frequently oc-
curring concepts are selected for replacement. For each
identified concept, positive concepts that do not require
modification are also determined. Simultaneously, a re-
placement concept is selected from an external search set,
with the objective of positioning it as far as possible from
the embedding of negative concepts while bringing it closer
to positive concepts. Cosine similarity is utilized to measure
expression similarity, allowing us to score potential replace-
ment concepts effectively.

Figure II presents the accuracy comparison of NFRes-
Net50 on Flower-102 before and after concept replacement.
The results demonstrate that replacing different numbers of
concepts leads to improved test accuracy for both the black-
box baseline and the corresponding CBM.

B. More Evaluation on Approximation and In-
tervention

We also conduct a class-based accuracy analysis on the ap-
proximate black-box CBM inference structure and compare
it with the original black-box model. Figure III presents a
subset of accuracy comparison curves for confusing classes
between the CBM-based approximate reasoning structure
and the original black box. Additionally, Table I reports
improvements achieved by CBM inference after applying a
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Figure II. Comparison of accuracy before and after the con-
cept replacement of NFResNet50 and the corresponding CBM on
Flower-102.

concept weight matrix in CBM-HNMU. The results indi-
cate that the classification accuracy curve of CBM on inter-
vention classes generally aligns well with that of the origi-
nal black box. This suggests that CBM can effectively ap-
proximate the reasoning logic of the black box within lo-
cally confused classes. Furthermore, we evaluate the accu-
racy of the concept intervention algorithm based on CBM.
The findings reveal that nearly all interventions help correct
concept-related reasoning errors, leading to improvements
in both class-level and global accuracy.

To preserve the predicted distribution over non-target
classes when transferring intervention knowledge, we apply
the operator — pr, to reassign only the residual probability
mass from non-target classes to the intervention class, as

Saway, and select the optimal concept replacement.

defined in Eq. (9). Figure IV reports the accuracy shift for
non-target classes across both models and all three datasets.
The results show that performance is stable and closely
aligned with pre-intervention accuracy (scatter plot), with
a slight overall improvement (box plot).

C. Intervention Concept Visual Masking

We use OpenAI-CLIP as the concept communication mod-
ule, enabling CBM-HNMU to align natural language in-
tervention semantics with corresponding visual concept
changes before and after intervention. To validate this
alignment, we conduct visual masking experiments on
intervention-related concepts across different models and
datasets.

First, we identify a specific class of intervention con-
cepts in the black-box model and extract the top-ranked nat-
ural language concepts with the highest intervention scores
(Sut/ Spr) that are also visually relevant. Next, we collect
all samples from that class that the black-box model mis-
classifies. Finally, we apply pixel-based masking to mask
the corresponding semantic information associated with the
intervening natural language concept, generating new sam-
ple inputs.

These modified samples are then fed into the original
black-box model to obtain new predictions and confidence
scores, and compare with the original results. As shown
in Figure V, in the first example, we visually masked 7
misclassifies samples of sword lily on Flower-102 using
NFResNet-50. Based on the vision-related concepts iden-
tified in the intervention’s natural language description, we
masked the central pixels of the flowers in these samples.



Models Flower-102 CUB-200 FGVC-Aircraft
w/oINT w/ INT w/oINT w/ INT wf/oINT w/ INT
NFResNet50 93.63 93.75 (1 0.12) 61.90 62.70 (1 0.80) 65.80 66.67 (1 0.87)
Vit_Small 80.10 80.28 (1 0.18) 54.10 54.15 (1 0.05) 62.95 63.55 (1 0.60)
ResNeXt26 89.16 90.69 (1 1.53) 60.15 60.50 (1 0.35) 63.79 64.69 (1 0.90)
GCVit_Base 92.84 93.26 (1 0.42) 77.10 77.15 (1 0.05) 68.98 69.91 (1 0.93)

Table 1. Comparison of classification accuracy with Pcpay (w/o INT) and Pepur (w JINT).
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Figure III. Confusion class accuracy comparison curve between part of the CBM approximate reasoning structure and the original black
box. The y-axis is the prediction accuracy of the class, and the x-axis is the corresponding intervention class (I).

In the second example, we performed a similar pro-
cedure on four misclassified samples spanning three air-
craft classes (747-300, 747-400 and DC-3). Notably, when
conducting visual masking experiments on CUB-200 using
GCVit, the intervention concept exhibited the semantic fea-
ture of gray. To account for this, we applied a pure white
mask to cover the pixels corresponding to the intervention
concept.

D. Hardware and Software Settings

All experiments in this work are conducted on Ubuntu 20.04
within an Anaconda3 virtual environment, using NVIDIA
3090 (24GB) GPU. This setup allows us to provide inte-
grated environment resources, including code and datasets,
in a public remote hub in the future.

The pre-trained network weights and datasets referenced
in the paper are publicly available resources. We will in-

clude download links and deployment instructions in subse-
quent packaged code. Additionally, for the various methods
cited in the paper, we will provide links along with detailed
deployment guidelines.

E. Parameter Settings

All baseline models (P,,, w/o INT) use weights pre-
trained on ImageNet-1K, and are tuned on the correspond-
ing experimental datasets with 50 epoch. During the fine-
tuning process, the learning rate is set to 1le~4. Both con-
fusing classes selection, local approximation are performed
on the corresponding D,,;. During local approximation,
learning rate is set to le~4 and epoch is set to 200. Con-
cepts intervention is still performed on the D,,; and only
execute the Algorithm 1 in the paper once to modify the
concept weight matrix (W) of the corresponding Popay.
Knowledge transfer requires setting different distillation
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Figure IV. Before and after intervention in non-intervention classes.

temperatures for teachers and student, where the teacher
model P; is spliced by the frozen original black box (P})
and locally approximated CBM (P?). The student model
P is the original black box. The distillation temperature
T, of Pt2 is 2.0, and the distillation temperature 75 of P;
is 1.5. Knowledge transfer is performed on the D,,,; for 10
epoch with learning rate 3e~7. The maximum number of
intervention concepts varies depending on the datasets. It
is recommended to set it between 10 and 100. The number
can be adjusted according to the intervention effect (we take
the optimal value in multiple groups of experiments).

F. Discussion

In this paper, we demonstrate the effectiveness of the CBM-
HNMU approach combined with gradient-based interven-
tion. In fact, according to the human-understandable inter-

vention concepts provided by CBM-HNMU, we can even
manually select the visual part corresponding to the con-
cept to quickly intervene and determine the harmful concept
dependence of the model on the data domain. Secondly,
CBM-HNMU bridges the black box and interpretable struc-
tures, integrates visual and language modalities, and pro-
vides intuitive model explanations for easy understand-
ing. The method’s explanation-based intervention effec-
tively identifies the recognition patterns and biases inher-
ent in black-box models, laying the foundation for building
interpretable classification networks in the future.

G. Limitations

CBM-HNMU relies on both visual concepts and natural
language concepts extracted from the black box. Although
many unsupervised methods can be used to efficiently ex-
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Figure V. Visual related concepts masking. Intervention concepts
and class name having the same color represent that the interven-
tion concept belongs to the corresponding class, and the visual
mask of samples belonging to this class is labeled according to
these concepts.

tract the concepts of the corresponding model and even give
attribution explanations, and using LLMs can quickly ob-
tain the concept bottleneck of the corresponding datasets,
inevitably due to 1) limitations of concept extraction meth-
ods, such as concept extraction and explanation methods
that are not model-oriented, it will lead to situations where
concepts cannot be well connected to samples. 2) The hallu-
cination phenomenon of LLMs may produce a large num-
ber of abstract concepts. Abstract concepts and concrete
concepts have little impact on the expression of concept
bottleneck and OpenAI-CLIP can be also used to connect
abstract concepts with visual feature. However, it is disad-
vantageous for human to understand the model intervention
process and error correction explanation based on the re-
lationship between abstract concepts and visual concepts.

Problem 1) can be solved by applying model-oriented con-
cept extraction methods, such as the Model-Oriented Con-
cept Extraction (MOCE). For question 2), manual verifica-
tion is a more compromised method, which can save most
of the time while ensuring the quality of the concept.

H. Visualization and Explanation

We begin with additional visualizations of intervention-
based explanations, as shown in Figures VI — XIV. These
illustrations highlight the relationship between natural lan-
guage intervention concepts and changes in black-box vi-
sual representations before and after intervention. We
present results using CBM-NHMU on NFResNet50, Bot-
Net26, and RexNet100, with interventions applied to
Flower-102, CUB-200, and FGVC-Aircraft. Notably, the
samples are randomly selected from a subset where the
black-box model’s original classification errors on the test
set are corrected after intervention. Each corrected sample
includes at least one pre- or post-correction class associated
with the confused classes, ensuring a clear visual link to the
intervention concept (see “Coverage” in the manuscript).

Before detailing each intervention explanation exam-
ple, we first clarify the key components in each visualiza-
tion. In each example, the upper-left image represents the
CRAFT concept attribution of the input image to the post-
intervention black-box model. Recall P4 and P, /7y de-
note the classification predictions of the black-box model
before and after the intervention, respectively.

Incorrect class predictions (i.e., those made by the orig-
inal black-box model) are marked green if they belong to
the confused classes (I') and black otherwise. The correct
class prediction (i.e., the black-box model’s output after in-
tervention) is marked purple if it falls within the confusion
category; otherwise, it is also marked by black. In each
visualization below, real example images corresponding to
incorrectly predicted classes are displayed. These examples
help illustrate why the black-box model misclassified the
input and how the intervention concept corrects the error.
By examining images from confused categories alongside
intervention concepts, users can better understand the rea-
soning behind the intervention. Intervention concepts and
their semantically related visual counterparts in the con-
fused classes are highlighted with purple outlines, whereas
relevant concepts from the incorrectly predicted class are
enclosed in green borders. We are now in the position to
detail intervention explanation examples.

In Figure VI, the baseline of NFResNet50 misclassifies
sword lily as bougainvillea. The visually related interven-
tion concept: " Prominent spadix in the center of the flower.”
prompts us to delete the related concept about the promi-
nence in the center of flower to correct this error. We can
find that the third most important visual concept extracted
by the original black box before intervention corresponds
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Figure VI. More visualization of NFResNet50 on Flower-102.
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exactly to this description, and the importance score of this a similar conceptual explanation, but the difference is that
concept is 0.11. After the intervention, the black box gives the importance score of the intervention concept dropped
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Figure VIII. More visualization of NFResNet50 on CUB-200.
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Figure IX. More visualization of BotNet26 on Flower-102.

significantly ({ 0.06 — 0.05). Combining the misclassifies
sample image, we can also see that the visual features cor-
responding to the intervention concepts are indeed easy to
confuse the two classes.

In Figure VII, NFResNet50 misclassifies BAE 146-300
as BAE 146-200. The visually related intervention concept:
”Blue with a grey and white stripe.” and ”Large logo on the
tail.” prompts us to delete the related concept about the tail
and the color-related feature of aircraft to correct this error.
We can find that the second and the third most important
visual concept extracted by the original black box before
intervention corresponds exactly to the descriptions. After
the intervention, we can find that the network relies less on
the corresponding color-related feature and tail of the air-
craft to classify real class. The concept importance scores
of color-related features and aircraft tail dropped from 0.22
to 0.18 and 0.15 to 0.13, respectively.

In Figure VIII, NFResNet50 misclassifies shiny cowbird
as American crow. The visually related intervention con-

cept: "Black webbed foot.” prompts us to delete the related
concept about the foot of bird to correct this error. We can
find that the second and the third most important visual con-
cept extracted by the original black box before intervention
corresponds exactly to this description. After the interven-
tion, we can find that the network relies less on bird foot-
steps to classify real class.

In Figure X, BotNet26 misclassifies bougainvillea as
siam tulip. The visually related intervention concept: ~Very
feminine shade of pink.” prompts us to delete the related
concept about the pink color of flower to correct this error.
We can find that the first most important visual concept ex-
tracted by the original black box before intervention corre-
sponds exactly to this description, and the importance score
of this concept is 0.80. After the intervention, the black
box gives a similar conceptual explanation, but the differ-
ence is that the importance score of the intervention concept
dropped significantly (] 0.30 — 0.50).

In Figure X, BotNet26 misclassifies Model B200 as DC-
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Figure X. More visualization of BotNet26 on FGVC-Aircraft.
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Figure XI. More visualization of BotNet26 on CUB-200.

3. The visually related intervention concept: “Retractable
tricycle landing gear.” and "tricycle landing gear configu-
ration with nose wheel steering.” prompts us to delete the
related concept about the gear of aircraft to correct this er-
ror. We can find that the second most important visual con-
cept extracted by the original black box before intervention
corresponds exactly to this description. After the interven-
tion, we can find that the network relies less on gear of the
aircraft to classify real class and the original score of the

corresponding visual concept dropped from 0.24 to 0.15.

In Figure XI, BotNet26 misclassifies common tern as
Jorsters tern. The visually related intervention concept: ~A
duck with a long, thin bill.” prompts us to delete the related
concept about the bill of bird to correct this error. We can
find that the second and the third most important visual con-
cept extracted by the original black box before intervention
includes this description. After the intervention, we can find
that the network relies less on bird bill to classify real class
and the original score of the second most important visual

concept dropped from 0.21 to 0.09. The third most impor-
tant visual concept even disappears.

In Figure XII, RexNetl00 misclassifies water lily as
camellia. The visually related intervention concept: “heart-
shaped spathe.”, ”curved spadix.” and "prominent spadix
in the center of the flower” prompts us to delete the re-
lated concept about the pistil of flower to correct this error.
We can find that the second most important visual concept
extracted by the original black box before intervention in-
cludes corresponding features. However, the stamen feature
given in concept 2 can easily be confused between the two
classes. After the intervention, we clearly can find that the
black box replaced concept 2 with a more representative vi-
sual concept of the stamen to water lily.

In Figure XIII, RexNet100 misclassifies MD-87 as MD-
80. The visually related intervention concept: “Large t-
shaped tail fin.”, "white with blue and red stripes.”, "large
tail fin with the airline’s logo.”, etc. prompts us to delete
the related concept about the tail with corresponding color-
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Figure XII. More visualization of RexNet100 on Flower-102.
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Figure XIV. More visualization of RexNet100 on CUB-200.

related and shape-related feature of aircraft to correct this
error. We can find that the second most important visual
concept extracted by the original black box before interven-
tion corresponds exactly to this description. After the inter-
vention, we can find that the network relies less on the tail
of the aircraft to classify real class and the original score
of the corresponding visual concept dropped from 0.45 to
0.35.

In Figure XIV, RexNet100 misclassifies white necked
raven as American crow. The visually related intervention
concept: "Head is grayish-brown.” and “large, black bird
with a long, thick beak.” prompts us to delete the related
concept about the head and beak of bird to correct this er-
ror. We can find that the first most important visual concept
extracted by the original black box before intervention cor-
responds exactly to this description. After the intervention,
we can find that the network relies less on bird head to clas-
sify real class and the original score of the corresponding
visual concept dropped from 0.37 to 0.28.
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