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Supplementary Material

A. Implementation Details

Details in Equation 5. According to the prior work [25],
the explicit expression of My is
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The above expression shows that M}, can be precomputed
before training to improve efficiency.

Simplified Pseudo 2D Segmentation. We use Grounded-
SAM-2 [12, 17, 26] with the Grounding DINO [17]
base model to generate the segmentation results as
the object mask. For the object segmentation in
the KITTI [7] and Waymo [29] datasets, we use the
prompt “car.bus.truck.van.human”. Additionally, for the
nuScenes [1] dataset, we include “bike” as an extra prompt.
To generate pseudo labels for the sky mask, we use the
prompt “sky”.

Attribute Inheritance in Densification. In AD-GS, the ob-
ject Gaussians can only generate object Gaussians through
the splitting or cloning operations, which are the same as
the background Gaussians. The newly created Gaussians
will inherit all parameters from their parents, including the
fixed parameter i, in Equation 10. With this design, the loss
Loy; in Equation 9 optimizes the opacity of each Gaussian,
allowing object or background Gaussians with low opacities
in incorrect locations to be pruned, thereby refining their
numbers and positions.

Others. Following StreetGS [35], we incorporate
Structure-from-Motion (SfM) [27] points as the initial
background Gaussians to account for regions beyond the
LiDAR scan range. To mitigate the impact of imprecise
camera poses in the KITTI and nuScenes datasets, we use
a unified deformation for the positions of all Gaussians
G € Qop; U Qprg. Additionally, for the learnable spheri-
cal environment map, we set the resolution to 8192 x 8192.

Table 6. Ablation of the B-spline control points on the KITTI [7]
dataset by changing the ratio between the number of control points
and total frames. The color of each cell shows the best and the sec-
ond best.

Frames per Ctrl Pts  PSNR1 SSIM 1 LPIPS |

1 27.26 0.902 0.046
2 28.69 0.910 0.038
3 (Ours) 29.16 0.920 0.033
4 29.11 0.920 0.033

Table 7. Ablation of the B-spline order on the KITTI [7] dataset.
The color of each cell shows the best.

Order PSNRT SSIM1 LPIPS |
k=2 29.10 0.919 0.033
k = 6 (Ours) 29.16 0.920 0.033
k=10 29.12 0.920 0.033
k = 6 + quat sin&cos 28.99 0.919 0.034

B. Experimental Setup Details

Dataset. For the KITTI [7] dataset, we select 0001, 0002
and 0006 sequences for evaluation with the left and right
cameras. For the Waymo [29] dataset, we select seg104481,
seg123746, seg176124, seg190611, seg209468, seg424653,
$eg537228 and seg839851 with the FRONT camera, and
use one out of every four frames for testing. For the
nuScenes [1] dataset, we select 0230, 0242, 0255, 0295,
0518 and 0749 scenes from 10 to 69(inclusive) frames with
the FRONT, FRONT_LEFT, and FRONT_RIGHT cameras.

Baselines. We mainly use the official implementation of
EmerNeRF [36] for the experiments on the Waymo and
nuScenes dataset. For the PVG [2], we apply the hyper-
parameters designed for the Waymo dataset to evaluate its
performance on the nuScenes dataset. Notably, we use
the same sky masks generated by SAM [12, 17, 26] for
EmerNeRF, PVG and AD-GS (Ours). To adapt Grid4D [34]
for auto-driving scenarios, we extend it by increasing the
temporal grid resolution to 1024 x 1024 x 32. We adapt
4DGF [5] for our experimental setting on the Waymo
dataset by adding the SfM points and disable the camera
optimization.

Others. We use the dynamic mask from StreetGS [35] to
compute the PSNR* only for moving objects on the Waymo
dataset in Table 2 and Table 5.
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Figure 9. Deformation map of the object modeling module abla-
tion study. In the deformation map, similar colors indicate similar
deformations, and B-spline curves enhance the clarity and accu-
racy of the visualization. The bottom scenario depicts a car that is
visible only briefly. In this case, optimization might be influenced
by incorrect gradients from the training frames where the car is
invisible. The results further demonstrate the effectiveness of B-
spline curves in local fitting.

Table 8. Rendering speed comparison on the KITTI [7] dataset
with self-supervised models. The color of each cell shows the best
and the second best.

Model Grid4D [34] PVG[2] AD-GS (Ours)
PSNR 1 23.79 27.13 29.16
FPS 1 40 58 47

C. Additional Results

Ablation of B-Splines. We conduct additional ablation
studies on the parameters of B-spline curves using the
“KITTI-75%” setting. The results are presented in Table 7
for the order &k and Table 6 for the number of control points.
When the order is too low or the control points are overly
dense, the smoothness of the B-spline curves is constrained.
In this case, each control point is optimized using fewer
frames, leading to performance degradation under noisy
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Figure 10. Failure cases when facing complex objects (a) and ob-
jects only visible in a quite short time (b).

Table 9. Quantitative comparison by only removing flow supervi-
sion Ly in our model. The color of each cell shows the best and
the second best. * denotes the metric only for moving objects.

Waymo KITTI-75%
Model PSNR SSIM LPIPS PSNR* [PSNR SSIM LPIPS
PVG 29.54 0.895 0.266 21.56 |27.13 0.895 0.049

EmerNeRF |31.32 0.881 0.301 21.80 - - -
Ours w/oLy|33.20 0.925 0.229 25.32 |28.84 0.917 0.036
Ours 3391 0.927 0.228 27.41 [29.16 0.920 0.033

Ours full
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Figure 11. Qualitative comparison by removing flow supervision
in our model.

self-supervision. Conversely, when the order is too high
or the control points is insufficient, the local fitting capa-
bility decreases, resulting in artifacts. Based on these ob-
servations, we select an order of £k = 6 and set the ratio
between the number of control points and the total frames
to 1/3 in our experiments to balance the smoothness and
the local fitting property. Additionally, we perform an ab-
lation study on the deformation of the rotation parameter,
with results shown in the last row of Table 7. The setting
“sin&cos” refers to modeling Gaussian rotation deforma-
tions using trigonometric functions, and the results show
that the trigonometric functions are not necessary for the
rotation parameters.

Ablation of Optical Flow Supervision. A certain opti-
cal flow supervision is essential for this task, as it signifi-
cantly aids in reconstructing the fast-moving objects com-
monly found in auto-driving scenarios. Pixels correspond-
ing to such objects often exhibit significant displacements
over time, making accurate matching challenging in the ab-
sence of flow supervision for trajectory reconstruction. We



conducted an additional experiment in which only the flow
supervision term L of our model was removed, and the
results are shown in Table 9. Although our model still out-
performs previous methods without optical flow, Figure 11
exhibits the obvious degradation caused by the absence of
flow supervision, particularly in cases with fast-moving cars
crossing the scene.

Analysis of Motion Fitting. To further demonstrate the ef-
fectiveness of trigonometric function and B-spline curve in
global and local fitting, we visualize the deformation map
mainly following the approach in Grid4D [34]. The results
are shown in Figure 9, where similar colors indicate simi-
lar deformations. Although trigonometric functions can ap-
proximate the general deformation of an object under the
noisy self-supervision, their representation tends to be in-
accurate due to the omission of per-frame local details. In
contrast, B-spline curves offer advantages in capturing local
details, allowing for more precise fine-tuning of the repre-
sentation. The bottom scenario in Figure 9 illustrates a spe-
cial case where a car suddenly appears and then disappears,
remaining visible for only about 17 frames (total about 160
frames). When the model has not been fully optimized, the
car still appears in the invisible frames. However, the in-
visible frames cannot provide the correct information for
the model to fit the trajectory at their timestamps. In such
cases, trigonometric functions might be influenced by nu-
merous invisible training frames, leading to incorrect gra-
dients during optimization and resulting in severe blurring
in motion representation and rendering. However, B-spline
curves mitigate this issue by optimizing only the relevant
control points, thereby reducing the impact of incorrect gra-
dients from invisible training frames and significantly im-
proving the accuracy of the representation. Therefore, by
combining trigonometric functions and B-spline curves for
motion fitting, we achieve more accurate motion represen-
tations.

Rendering Speed. We evaluate the rendering speed of AD-
GS on the KITTI dataset with the “KITTI-75” setting. As
shown in Table 8, AD-GS maintains fast rendering perfor-
mance while improving quality, benefiting from the low
computational overhead of trigonometric functions and B-
spline curves.

Additional Visualization. Figure 13 shows the additional
rendering results on the KITTI [7] dataset. Figure 12 is
the additional rendering results on the Waymo [29] dataset.
Figure 14 displays the additional rendering results in the
nuScenes [1] dataset.

D. Limitations

Although AD-GS achieves state-of-the-art performances in
self-supervised auto-driving scene rendering, it still has sev-
eral limitations. In some cases, AD-GS fails to outperform
certain state-of-the-art rendering models that leverage man-

ual 3D annotations to avoid the challenges of motion and
object reconstruction. Additionally, our model may pro-
duce artifacts if the quality of the pseudo-labels is quite
low. As illustrated in Figure 10 (a), our model probably
fails to reconstruct objects with highly complex motions
and structures. Moreover, when an object is only visible
for an extremely brief period, such as about 10 frames, AD-
GS might obtain suboptimal rendering results, as shown in
Figure 10 (b).
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Figure 12. Additional qualitative comparisons on the Waymo [29] dataset.
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Figure 13. Additional qualitative comparisons on the KITTI [7] dataset.

EmerNeRF Grid4D AD-GS(Ours) Ground Truth

Figure 14. Additional qualitative comparisons on the nuScenes [ 1] dataset.
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