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A. SimGCD

In this work, our primary experiment is based on
SimGCD, a representative parametric GCD method that
comprises two key components: (1) representation learning
and (2) classifier learning.

1)Representation Learning employs supervised con-
trastive learning on labeled samples, and self-supervised
contrastive learning on all samples. Specifically, given two
augmented views x; and ! of the same image in a batch
B. The unsupervised contrastive loss is written as:
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where z = ¢g(f(x)) and is ¢3-normalized, g is a MLP pro-
jection head, f is the feature backbone, 7, is a temperature
value.

The supervised contrastive loss is employed to enhance
feature representation by leveraging labeled data to pull
samples from the same class closer in the feature space
while pushing apart samples from different classes, for-
mally written as:
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where N represents the set of indices corresponding to im-
ages that share the same label as x; within a batch B, and
T, 1s a temperature parameter. Finally, the overall represen-
tation learning loss is:
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2) Classifier Learning aims to train a classifier that
assigns labels to unlabeled data. Within the SimGCD
framework, this objective is achieved through a paramet-
ric classifier refined via a self-distillation strategy, where
the number of categories, denoted as |),|, is predeter-
mined. Letting K = |),|, SimGCD initializes a set
of parametric prototypes for each category, represented as
C ={e1,c9,¢3,...,cx}. Given a backbone network f(-),
a soft label is obtained by applying softmax classification
over these parametric prototypes:
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where h; = f(x;) is the representation of x; and 7
is a temperature value. A soft label ¢’ is similarly pro-
duced for @} with a sharper temperature 7;. The classifica-
tion objectives are simply cross-entropy loss L..(q¢',p) =
—3 . @®logp™®) between the predictions and pseudo-
labels or ground-truth labels. That is,
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where y; denotes the one-hot label of ;. SimGCD employs
a mean-entropy maximization regularizer as part of the un-
supervised objective. Specifically, p = ﬁ Y icp(@i+D;)
represents the mean prediction of a batch, and the entropy is
defined as H(p) = — >, p*) log p*). The classification
objective is:
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The overall objective of SimGCD is:

Lsz’m = Lrep + ‘Ccls- 3

B. Experimental Setup
B.1. The details of datasets

In this study, we validate the effectiveness of our
method using three challenging fine-grained datasets from
the Semantic Shift Benchmark [7]: CUB [9], Stanford
Cars [4], and FGVC—-Aircraft [6]. As illustrated



Dataset All(classes/samples) Old labeled Old Unlabeled New A T
CUB [9] 200/6k 100/1.5k 100/1.5k 100/3k 0.05 0.2
Stanford Cars [4] 196/8.1k 98/2.0k 98/2.0k 98/4.1k  0.05 0.01
FGVC-Aircraft [6] 100/6.7k 50/1.7k 50/1.7k 50/3.3k  0.05 0.01
CIFARI1O [5] 10/50.0k 5/12.5k 5/12.5k 5250k 0.05 0.1
CIFAR100 [5] 100/50.0k 80/20.0k 80/12.5k 20/17.5k  0.05 0.1
ImageNet-100 [2] 100/127.2k 50/31.9k 50/31.9k 50/63.4k  0.05 0.05
Herbarium-19 [8] 683/34.2k 341/8.9k 341/8.9k 342/16.4k  0.05 le-4

Table 1. Summary of datasets and training configurations.
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Figure 1. Image examples from the used datasets.

in Figure 1, these datasets often contain complex back-
ground information. Following SimGCD [10], we parti-
tioned each dataset into Known and Unknown categories,
with each category representing 50% of the total number
of classes. Notably, 50% of the samples in the Known
classes are unlabeled. To further assess the robustness of
our method, we applied it to three generic classification
datasets (CIFAR10/100 [5] and ImageNet—-100 [2]),
as well as the challenging large-scale fine-grained dataset
Herbarium-19 [8]. As shown in Figure I, the back-
ground interference in these datasets is relatively mini-
mal. We employed the same partitioning strategy for these
datasets, except for CIFAR-100, where 80% of the classes
were designated as Known categories. Detailed information
of datasets can be found in Table 1.

B.2. Implementation details

Following SimGCD [10], we trained all methods with a
ViT-B/16 backbone [3] pre-trained with DINO [1]. We use
the output of AF with a dimension of 768 as the feature for
an image and only fine-tune the last block of the backbone.
We train with a batch size of 128 for 200 epochs with an
initial learning rate of 0.1 decayed with a cosine schedule
on each dataset. Aligning with [10], the balancing factor
Asim 1s set to 0.35, and the temperature values 7,, 7. as
0.07, 1.0, respectively. For the classification objective, we
set 75 to 0.1, and 7 is initialized to 0.07, then warmed up to
0.04 with a cosine schedule in the starting 30 epochs. For
AF, the configurations of A and 7 are provided in Table 1.
All experiments are done with an NVIDIA GeForce RTX
4090 GPU.

C. Extended Discussions

C.1. The impact of AF on model attention

To further investigate Distracted Attention in the model
across various data sets, we used the self-attention scores
of the final ViT block to generate patch masks on both
the Stanford Cars and FGVC-Aircraft datasets.
As depicted in Figure 2, while the [CLS] tokens for la-
beled data consistently focus on key objects, those for un-
labeled data, particularly from unknown category, exhibit
pronounced associations with background regions. This
unintended capture of extraneous information negatively
impacts the quality of feature representations and, conse-
quently, model performance. As can be observed from
the comparison between different methods, AF significantly
ameliorates the model’s attention, enabling it to more ef-
fectively concentrate on the critical target regions. How-
ever, it is noteworthy that the extent of improvement varies
across datasets due to differences in background complex-
ity. As shown, FGVC-Aircraft predominantly features
backgrounds such as airports or skies, which introduce
minimal interference compared to the more cluttered and
diverse backgrounds present in the CUB and Stanford
Cars. This inherent characteristic of FGVC-Aircraft
explains why the performance gains achieved through AF
are less pronounced, compared to CUB and Stanford
Cars (Table 1 of Section 4.2).

C.2. Single-view TAP or Multi-view TAP?

During the training process of SimGCD+AF, each data
point is augmented with two distinct views. And, TAP is
applied to only one of these views. To further assess the
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Figure 2. The masks obtained by thresholding the self-attention maps to retain same percent of the total mass cross different methods.

potential benefits of a more comprehensive approach, we
experimented with multi-view TAP, where TAP is applied
to both augmented views simultaneously. As shown in Ta-
ble 2, while multi-view TAP does offer some performance
improvements, it also leads to a noticeable degradation in
comparison to single-view TAP. We believe that this can
be attributed to two primary factors. First, TAP can be
viewed as a form of non-regular image cropping augmen-
tation, where single-view TAP is particularly effective in
helping the model focus on key objects or regions of inter-
est. By pruning unnecessary tokens in a single view, the
model is able to maintain critical information, thus improv-
ing its ability to extract meaningful features from the im-
age. Second, multi-view TAP essentially forces the model
to train without the potential interference of background in-
formation across both views. While this might seem benefi-
cial in theory by reducing noise, it can inadvertently reduce
the model’s ability to generalize.

Datasets CUB Stanford Cars FGVC-Aircraft
All Old New All Old New All Old New
SimGCD 60.1 69.7 554 557 733 47.1 53.7 64.8 482

+AF(M-TAP) 66.8 73.1 63.6 63.2 79.9 55.1 574 657 533
+AF(S-TAP) 69.0 743 66.3 67.0 80.7 60.4 594 68.1 55.0

Table 2. Investigation of Single-view Token Adaptive Pruning.
’AF(M-TAP)’ refers to a setting where TAP is applied to both aug-
mented views simultaneously.

C.3. [CLS] token attention vs. AF

To further demonstrate the effectiveness of AF, we utilize
the attention weights between the [CLS] token and individ-
ual patches as the scores in AF, while employing the same
strategy for pruning. The experimental results, as presented
in Table 5, reveal that constraining the interaction between

the [CLS] token and the irrelevant patches to a certain ex-
tent indeed enhances model performance. This improve-
ment underscores the utility of refining the model’s atten-
tion by mitigating the influence of task-irrelevant regions.
However, it is particularly noteworthy that accuracy for Old
category on FGVC-Aircraft exhibits a pronounced de-
cline. This phenomenon suggests that the attention weights
derived solely from the internal interactions between the
[CLS] token and other patches are inadequate to guarantee
that the model consistently attends to the correct key target
regions. Such an outcome highlights the limitations of re-
lying exclusively on intrinsic attention mechanism without
additional guidance or constraints. Collectively, these find-
ings not only underscore the generalizability and robustness
of AF in diverse datasets, but also emphasize the neces-
sity of incorporating more sophisticated strategies to ensure
precise attention allocation in complex visual recognition
tasks.

Dataset CUB Stanford Cars FGVC-Aircraft
atasets Al Old New All Old New All Old New
SimGCD 60.1 69.7 554 557 733 47.1 53.7 64.8 482
+(CLS] Atten) 639 722 59.8 62.3 77.4 551 549 582 533
+AF 69.0 74.3 663 67.0 80.7 60.4 59.4 68.1 55.0

Table 3. Investigation of [CLS] Token Attention. ’ AF([CLS] At-
ten)’ refers to using the attention weights between the [CLS] To-
ken and patches as patch scores.

C.4. The impact of resolution

Our empirical evaluations reveal that Attention Focus-
ing (AF) demonstrates limited performance improvements
on CIFAR10/100, prompting a systematic investigation
into its constraints. To this end, we conducted controlled
experiments involving resolution scaling of input images.
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Figure 3. The partitions of input images with the same patch size under different resolutions.

CIFAR10 CIFAR100
Datasets All Old New Al Old New T-OPs
SimGCD [10] 97.1 95.1 98.1 80.1 812 77.8 1687G
SimGCD+AF(224x224) 974 95.7 983 79.8 83.5 72.4 18.32G
SimGCD+AF(112x112)  97.8 959 988 822 850 765 4.7G

Table 4. Comparison with different resolutions.

As illustrated in Figure 3, original 32x32 pixel images were
upsampled to target resolutions of 112x112 and 224x224,
followed by uniform patch selection strategies under AF.
Notably, a critical phenomenon emerged when maintain-
ing consistent patch size across resolutions: Some inter-
nal patches of the target contain less information in high-
resolution input images. For instance, the blue-dashed
area in Figure 3 highlights a region devoid of meaning-
ful texture, which the TIME module assigns a low sig-
nificance score due to insufficient structural information.
This selection bias induces cascading effects, including (1)
loss of global object-related information during represen-
tation reconstruction and (2) suboptimal feature extraction
due to discarding foundational constituent patches. Quan-
titative experiments in Table 4 corroborates these obser-
vations: 224x224 resolution fails to achieve remarkable
performance improvements, even exhibiting performance
degradation on CIFAR100, whereas adopting 112x112
resolution not only yields significant performance gains but
also substantially reduces computational cost by over 70%,
with FLOPs decreasing from 16.87G to 4.7G.

This finding establishes a critical implementation pro-
tocol for AF: Processing original low-resolution images
through moderate resolution scaling achieves synergistic
optimization of model performance and computational ef-
ficiency by balancing information integrality with opera-
tional cost constraints.

C.5. Class Token or Aggregation Token?

In AF, we compute the average of all remaining tokens,
including the [CLS] token, to represent the image feature,
which serves as the output of the backbone. The rationale
behind this approach is that the remaining tokens are con-
sidered key patches that contain critical information about
the object. In contrast, a common practice is to use only
the [CLS] token as the image representation. As shown in
Table 5, this approach results in a significant drop in per-
formance. We believe the primary cause of this decline is
that applying the self-attention mechanism solely in the fi-
nal block prevents the [CLS] token from effectively aggre-
gating information from the diverse patches throughout the
image.

Datasets CUB Stanford Cars FGVC-Aircraft
All Old New All Old New All Old New
SimGCD 60.1 69.7 554 557 733 47.1 53.7 64.8 482
+AF([CLS]) 652 69.5 63.1 56.2 759 46.6 54.6 65.6 49.1
+AF 69.0 743 663 67.0 80.7 60.4 59.4 68.1 55.0

Table 5. Investigation of Token Aggregation. > AF([CLS])’ refers
to a setting where the [CLS] token is used as the output of the
backbone.

C.6. Computational efficiency of AF

To further validate the lightweight characteristics of
AF module, we conducted quantitative comparisons dur-
ing both training and inference phases. As illustrated in
Table 6, while the parameter exhibits a more substantial
increase during the training phase, the increase becomes
negligible during inference —- each TIME module requires
only a single vector for computation. Notably, despite the
increased training parameters, the additional computational
overhead remains marginal, with only a modest prolonga-
tion in training time consumption. Similarly, the testing



Parameter quantity Time consumption

Method Training  Testing  Training  Testing
SimGCD 81.82M  81.82M  18.875s 8s
SimGCD+AF  13221M  81.83M  21.125s 10s

Table 6. Quantitative comparison of parameter quantities and time
consumption for training and testing phases.
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Figure 4. Investigation of the parameter A and 7.

time demonstrates merely a slight increment. These results
underscore that the AF module achieves enhanced function-
ality without substantially compromising computational ef-
ficiency. The minimal impact on inference phase makes it
particularly suitable for deployment in resource-constrained
environments.

C.7. Parameter analysis

1) Hyperparameter T

For 7, we maintain A = 0.05, while varying 7 with a
same interval. As shown in Figure 4, it is evident that 7 can
yield significant performance improvements within a spe-
cific range. However, the influence of 7 on model perfor-
mance is particularly pronounced, as it directly governs the
extent of redundant information pruning. When 7 is exces-
sively large or small, it leads to over-pruning and under-
pruning, respectively. Over-pruning results in the loss of
global information, while under-pruning retains excessive
redundancy, both of which adversely affect the model’s per-
formance. Furthermore, the inherent variability of key tar-
get regions across images, influenced by differences in ob-
ject scale, spatial distribution, and background complexity,
makes a fixed pruning amount suboptimal. This limita-
tion is empirically demonstrated in Table 7 of Section 4.3,
where fixed pruning strategies underperform compared to
adaptive approaches. Such variability highlights the need
for a more flexible pruning framework that can dynamically
adjust to the unique image.

2) Hyperparameter \

For )\, we maintain 7 as the pre-set value for the corre-
sponding dataset, while varying within the set A = {0.01,
0.03, 0.05, 0.07, 0.1}. As shown in Figure 4, it can be ob-

served that the performance of AF declines when A < 0.03.
We attribute this phenomenon to the excessively low aux-
iliary loss, which diminishes the model’s ability to prune
redundant information. This reduction in pruning capacity
leads to a lower pruning rate, resulting in the retention of
excessive irrelevant features and, consequently, a degrada-
tion in representation. Conversely, when the loss is exces-
sively high, the pruning rate of AF becomes overly aggres-
sive, leading to incomplete image representations due to the
excessive removal of critical information. These observa-
tions reveal a clear relationship between the auxiliary loss
and the pruning rate: the loss function directly influences
the model’s pruning behavior by controlling the trade-off
between retaining relevant features and eliminating redun-
dancy. Despite these variations, AF consistently achieves
significant performance improvements across different A,
demonstrating its robustness and effectiveness in enhancing
image representation.
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