Accelerate 3D Object Detection Models via Zero-Shot Attention Key Pruning

Supplementary Material

A. Query-based 3D Detectors
A.1. Overall Architecture

DETR-based methods have become the mainstream ap-
proach for 3D object detection. As shown in Fig. 8 (a),
these methods typically take multi-view images as input and
use an image backbone to extract image features F'. Subse-
quently, F'is fed into a transformer decoder along with pre-
defined queries () for interaction. Represented by PETR,
dense methods adopt global attention, allowing () to inter-
act with F' globally. In contrast, sparse methods such as
DETR3D and Far3D employ deformable attention, select-
ing only a subset of F’ for interaction with (). The output of
the Transformer Decoder maintains the same shape as the
predefined queries (). It is passed to classification branches
and regression branches to obtain classification scores and
bounding boxes B. The bounding boxes B not only contain
object location information but also include object size, ori-
entation, velocity, and additional attributes (e.g., whether a
pedestrian is standing, walking, or sitting). During training,
DETR-based methods use a bipartite matching strategy to
associate predictions with ground truth and compute clas-
sification and localization losses. Since ground truth is un-
available during inference, the model selects the final pre-
dictions based on classification scores.

The Transformer decoder used in 3D detectors has a
structure of self-attention followed by cross-attention. The
self-attention module of the first layer takes pre-defined
query @ as input, and its output, together with image fea-
tures, will be fed into the following cross-attention module.
The output of the cross-attention module will be taken as
input by the next layer’s self-attention module. Our method
uses the attention map generated by the cross-attention
modules.

A.2. Advantages of Dense Methods over Sparse
Methods

Since the introduction of DETR, DETR-based methods
have gradually gained prominence in various vision tasks,
including image classification, 2D object detection, 3D ob-
ject detection, semantic segmentation, and object tracking.
However, DETR-based methods also have several draw-
backs, such as high computational cost and slow inference
speed. One major issue is their slow convergence rate.
DETR requires training for several hundred epochs on the
COCO dataset before convergence. To address this, De-
formableDETR was proposed. By utilizing reference points
for local feature sampling, DeformableDETR significantly
speeds up convergence, requiring only 50 epochs on the

_——— e —— — -

Image
Backbone
Image

Feature

Transformer
Decoder

CNN
Head

(@) (b)

Self
Attention

Queries
0°

—____________________
N - e e e ———————

Figure 8. (a) Overall architecture of query-based 3D detectors. All
dense models share the same overall structure: an image backbone
followed by a transformer decoder. The transformer decoder con-
sists of multiple stacked transformer layers. (b) The transformer
layer used in the transformer decoder in (a). Each layer has a self-
attention module and a cross-attention module. A CNN head can
be used following the cross-attention module, which inputs up-
dated queries and outputs the classification scores. We use atten-
tion map A € RNeXNk and classification scores C' € R¥¢ to
calculate each key’s importance score.

COCO dataset to achieve the same performance as DETR
trained for 500 epochs. In the 3D object detection domain,
sparse methods have been introduced to accelerate model
convergence while also reducing the computational burden
of the decoder to some extent.

However, our comparison reveals that the overall model
does not achieve a significant increase in inference speed,
nor does it reduce memory consumption. In some cases,
sacrificing performance necessitates additional compen-
satory mechanisms, introducing extra parameters that in-
crease memory usage.

We selected state-of-the-art dense and sparse methods,
OPEN and SparseBEYV, respectively, for comparison. From
the comparison in Tab. 6, it can be observed that when us-
ing the same backbone and image resolution, SparseBEV
performs worse than OPEN on the nuScenes validation
set. In terms of memory usage, during inference, Sparse-
BEV consumes more memory than OPEN when using the
same backbone and image resolution. Regarding inference
speed, SparseBEV does not show a significant advantage
over OPEN.

Model Backbone ImageSize | mAP1 NDST | mATE| mASE| mAOE| mAVE| mAAE | | Mem. (MiB)| Inf. Time (ms) |

SparseBEV ResNet50 704x256 | 45.45% 0.5559 | 0.5984 0.2706 0.4124 0.2435 0.1865 5640 71.72
pars ResNet101 ~ 1408x512 | 50.12% 0.5920 | 0.5621 0.2648 0.3211 0.2427 0.1947 15386 193.25
OPEN ResNet50 704x256 | 47.02% 0.5657 | 0.5676 0.2702 0.4221 0.2321 0.2019 4062 77.25
ResNet101 ~ 1408x512 | 51.80% 0.6043 | 0.5314 0.2679 0.3457 0.2095 0.1922 10696 196.55

Table 6. Comparison of SparseBEV and OPEN.

In summary, while current dense methods converge more
slowly than sparse methods, they offer advantages in per-
formance and memory usage, without showing a clear dis-
advantage in inference speed. Due to their strong overall
advantages, new dense methods continue to emerge. This
further highlights the importance of our work.

B. Analysis of Computation Cost of Impor-
tance Scores

The FLOPs of Matrix Multiplication. Assume there are
two matrices A € RVXC, B ¢ RM*C When computing
ABT € RN*XM “each row A; € R of A is multiplied by
each column B; € R of BT, which requires C' multipli-
cations and C' — 1 additions. Since A has N rows and B”
has M columns, the total computational complexity is:

Fratmu = N x M x (C + (C —1))
=NxMx(2C-1)

The FLOPs of a Multi-head Attention. Given the input
Q € RNexE K ¢ RV ¥F and V € RN*F 3 multi-
head attention module with H heads includes the operations
shown in Eq. (1)-Eq. (4).

In Eq. (1), the operations involve matrix multiplications:
one between Q@ € RM«*F and RF*F and two between
K,V € RN«XE and RE*F | with a total FLOPs:

a1

Ny - (4E? — 2F) + 2N,E? — N,E (12)

In Eq. (3), where ¢ € RNa*En [h ¢ RNkXEn,

1) Tt first calculates a matrix multiplication ¢ x (k")T
with FLOPs Ny Ny (2E), — 1). For total H heads, FLOPs
are:

Ni - (2N,E — N H) (13)

2) Next, a square root is performed to get v/ E with
FLOPs 1.

3) Bach element of (¢" x (k")T) divides v/'E, resulting
in FLOPs of N, N},. For total H heads, FLOPs are:

Ny - N,H (14)

4) For the Softmax operation with a vector of shape R
as input, it performs N exponentiations, /N —1 additions and
N divisions. Hence, Softmax (-) in Eq. (3) has N, (3N, —1)
FLOPs. For total H heads, FLOPs are:

Ny -3N,H — N,H (15)

5) Next, O" = A" x v" has N,Ej, (2N}, — 1) FLOPs.
For total H heads, FLOPs are:

Ny - 2NgE — N, E (16)
Hence, Eq. (3) and O™ = A" x v" has FLOPs:
Ny -(AN,E+3N,H)— N,H — N,E+1 a7
Finally, Eq. (4) has FLOPs:
2N,E* - N,E (18)

In summary, according to Eq. (12), Eq. (17) and Eq. (18),
a single multi-head attention module with H heads contains
FLOPs as follows:

Fuha(Ni) = ANi, + b
A =4E* —2FE 4+ 4N,E + 3N,H (19)
b=4N,E? —3N,E — N,H + 1

A transformer layer contains a self-attention module,
a cross-attention module, two layer normalizations and a
feed-forward network. Among these, only cross-module is
related to key with Q € RY«*F KV € RV+*F a5 inputs.
Hence, its FLOPs are:

Fea(Nk) = Funa(N) (20)

Cost of Computing Importance Scores. To calculate
importance scores, we first need to calculate averaged at-
tention maps A, which involves N, N (H — 1) additions
and N, N}, divisions, with total FLOPs N, N H. Next, we
calculate So = A ® C, which contains Ny x Nj, multi-
plications. After selection, we compute the sum along the
column of S1(Eq. (9)), which needs Ny (k — 1) additions.
In total, the FLOPs of calculating importance scores are:

Fs = NyNyH + NyNi, + Ni(k— 1) 21
Considering a transformer module with L layers apply-
ing tgGBC with r, n, k.
The FLOPs before pruning:

Foefore = L. FCA(Nk) (22)

Model Backbone ImageSize ‘ Ni, r ‘ GFLOPs Reduced FLOPs

- 174.91

SteamPETR ~ VovNet 1600x640 ‘ 24000 , 00 ‘ olad 6488%
- 123.55

OPEN ResNet101 1408x512 ‘ 16896 5000 ‘ v 50379

Table 7. FLOPs reduced of the transformer module after pruning.
We show the results of StreamPETR and OPEN with n = 2, k =
175 for both models. 1 GFLOPs = 10° FLOPs.

GFLOPs/StreamPETR GFLOPs/OPEN
150 100
o 1251 o
2 1001 S
S S
© 754 < 501
10000 20000 5000 10000 15000
T T
GFLOPs/StreamPETR GFLOPs/OPEN
100 %0/
& &
= S
o U 60‘
50
5 4 03 2 1 5 4 3 2 1
n n

Figure 9. FLOPs decrease with the increase r and the decrease
of n. StreamPETR (OPEN) shown in the figure uses VovNet
(ResNet101) and an image size of 1600 x 640 (1408 x 512). For
the first line, both models use n=2 and k = 175. For the second
line, StreamPETR (OPEN) uses £ = 175 and r=21000 (12000).

The FLOPs after pruning:

- r
Fuier = _ Fea <Nk —i- n)

i=0
+max(0,L — (n+1)) - Fea(Nx, —7) (23)

n—1
.
+) F <Nk—i-n>
=0

For different models, we calculate FLOPs before and af-
ter pruning as exhibited in Tab. 7.

According to Eq. (23), the FLOPs decrease linearly with
the increase of r and the decrease of n, as shown in Fig. 9.

As described in Sec. 4.5, the impact of k£ on inference
time is negligible. This is because when k varies within the
range [1, N,], its effect on FLOPs is minimal, as shown in
Fig. 10. No matter how k changes, the computational cost
of the Cross-Attention module varies by no more than 0.1
GFLOPs. Compared to the effects of r and n, the influence
of k on inference time can be ignored.

GFLOPs/StreamPETR GFLOPs/OPEN
] 58.88
61.47
§ 8 58.86 1
2 61.45 1 2
©] O
58.84 1
61.43 : : " . . r
250 500 750 250 500 750
k k

Figure 10. When k changes, there is almost no change in FLOPs.

C. More Results

C.1. Optimal Results

As described in Sec. 4.2, to facilitate clearer comparison
and save space, we uniformly report the results with n = 2
and k = 175. However, this is not the optimal configura-
tion for every model. Here, the optimal configuration refers
to the maximum value of r and the minimum value of n
that can be applied when the mAP and NDS decrease by
no more than 1%. For the vast majority of models, we can
directly use n = 1 for pruning, as shown in Tab. 8. For mod-
els that have already achieved optimal results, as shown in
Tab. 1 (e.g., PETR-vov, FocalPETR, MV2D, StreamPETR-
vov), we do not repeat the results here.

C.2. More Comparison to ToMe

As described in Sec. 4.3, our method is the first to apply
zero-shot pruning to 3D object detection models. Therefore,
there are no similar methods available for a fair compari-
son. However, we can attempt to transfer zero-shot pruning
methods from the Vision Transformer (ViT) domain to 3D
object detection models. Among these methods, ATS relies
on a classification token specifically designed for classifi-
cation tasks, and Zero-TPrune depends on a square-shaped
attention map. Neither of these features exists in 3D object
detection methods, making it impossible to transfer ATS
and Zero-TPrune to 3D object detection. In contrast, ToMe
does not have a strong dependency on the shape of the atten-
tion map or the classification token. Therefore, we selected
ToMe as the comparison method.

As shown in the Tab. 9, for PETR and MV2D, ToMe
performs extremely poorly—when pruning only 50% of the
keys, the model’s performance completely collapses, with
mAP dropping by more than 10%. In contrast, tgGBC can
maintain model performance. Even when n = 1 and some
results are suboptimal, with mAP dropping by more than
1%, the model does not degrade into an unusable state.

Model Backbone ImageSize Ni r n k ‘ mAP 1T NDS 1 ‘ mATE | mASE | mAOE | mAVE | mAAE | ‘ Inf. Time(ms) |
S - - [31.74% 03669 | 08392 02797 0.6145 09521 02322 131.94
PETR ResNet30 1408x512 | 16896 1000 | 175 | 30.78% 03579 | 0.8540 02832 06168 09703 02354 | 110.35(-1636%)
oo - | 41.05% 05024 | 07232 02692 04529 03896 0.1932 157.52
PETRv2 VovNet 800x320 | 12000 g0 5 175 | 4029% 04918 | 0.7333 02750 04526 04428 0.1930 | 139.33(-11.55%)
o 38.01% 0.4822 | 0.6781 02763 0.6401 02831 0.2007 60.52
StreamPETR — ResNet50 - 704x256 ‘ 42242000 1 900 ‘ 37.96% 0.4822‘ 0.6828 02757 0.6373 02794 0.2009 ‘ 51.59(-14.76%)
- 30.81% 0.4460 | 07040 02699 04951 0.8438 02177 125.13
3DPPE VovNet 800x320 | 6000 550, | 175 ‘ 39.57% 0.4430 | 07089 02729 04974 0.8496 02201 | 94.09(-24.81%)
o 35.14% 0.4640 | 07300 02717 04980 04324 0.1845 178.87
M-BEV VovNet 800x320 ‘ 12000 6000 1 175 ‘ 34.91% ().4600‘ 07379 02727 05049 04428 0.1873 ‘ 150.93(-15.63%)
L. - | 47.02% 05657 | 05676 02702 04221 02321 0.2019 77.25
ResNet30 704x256 | 4224 500, | 900 | 46.88% 0.5636 | 0.5687 02721 02332 02315 02026 | 63.31(-18.05%)
T - [5207% 06128 | 05250 02566 02811 02148 0.1982 118.55
OPEN VovNet 800x320 | 6000 33, | 175 | 52129 06130 | 0.5250 02569 02810 02148 0.1985 | 110.21(-7.04%)
- - - [51.80% 0.6043 | 05314 02679 03457 02095 0.1922 19655
ResNetl01 1408x512 1 16896 1,15 1 175 | 51.47% 0.6018 | 05356 02691 03446 02131 0.1931 | 174.70¢-11.16%)
; S - - | 5420% 0.6187 | 05589 02571 02716 02353 0.2007 863.47
ToC3D ToC3DVIT 1600x800 | 30000 00 1 900 | 5331% 0.6121 | 05736 02591 02713 02381 02029 | 809.48(-6.25%)
Table 8. Optimal results for each model.
Model Backbone ImageSize | Pruning r n | mAP+ NDS 1 | mATE | mASE | mAOE | mAVE | mAAE |
‘ - - - | 31.74% 0.3669 ‘ 0.8392 0.2797 0.6145 09521 0.2322
8000 2 | 30.48% 0.3543 0.8708 0.2816 0.6091 0.9852 0.2342
ToMe 8000 1 | 29.81% 0.3490 | 0.8714 0.2823 0.6173 0.9878 0.2418
ResNet50 1408x512 12000 2 | 29.63% 0.3461 | 0.8859 02836 0.6198 09895 0.2412
8000 2 | 31.22% 0.3639 | 0.8436 0.2808 0.6133 0.9517 0.2329
Ours 8000 1 | 31.58% 0.3651 0.8418 0.2801 0.6148 0.9576 0.2330
PETR 12000 2 | 30.78% 0.3579 | 0.8540 0.2832 0.6168 09703 0.2354
- - - | 40.45% 0.4517 0.7287 0.2706 0.4485 0.8399 0.2178
12000 2 | 21.88% 0.2835 09517 0.4471 0.5913 1.0230 0.2688
ToMe 12000 1 | 27.17% 0.3350 | 0.8710 0.3560 0.5512 0.9959 0.2342
VovNet 1600x640 18000 2 | 26.58% 03162 | 09143 04300 05663 1.0210 0.2564
12000 2 | 40.42% 0.4502 | 0.7305 0.2702 0.4501 0.8512 0.2172
Ours 12000 1 | 39.37% 0.4425 0.7429 0.2722 0.4592 0.8517 0.2174
18000 2 | 39.53% 0.4432 | 0.7482 0.2720 0.4538 0.8539 0.2167
| - - -] 39.81% 04460 | 0.7040 0.2699 04951 08438 0.2177
’ ToMe 2000 2 | 39.56% 0.4432 0.7083 0.2715 0.4972 0.8490 0.2198
SDPPE VovNet 800x320 1| 36.99% 04197 | 07500 02719 05337 08735 0.2233
Ours 2000 2 | 39.74% 0.4449 0.7057 0.2707 0.4956 0.8465 0.2202
1| 39.57% 0.4430 0.7089 0.2729 0.4974 0.8496 0.2201
| - - - | 4492% 05399 | 0.6246 0.2657 03840 04009 0.1722
) 14 2 ToMe 50% 2 | 13.62% 0.2754 0.9028 0.3472 0.7737 0.6777 0.2261
MV2D ResNet50 1408x5 ° 1] 1345% 02721 | 09000 03477 0.7890 0.6864 0.2286
Ours 509 2 | 44.11% 0.5384 0.6248 0.2657 03844 0.4024 0.1717
urs ° 1] 41.17% 05183 0.6289 0.2693 0.3887 0.4165 0.1717

Table 9. More results of comparison to ToMe [1]. Due to the use of bipartite matching, ToMe cannot prune more than 50% of keys in one
layer; hence, some results of » > Ny, /2 are lacking.

C.3. Comparison to More Baselines

We also add comparisons with DART[37] and random prun-
ing in Tab. 11 to demonstrate the effectiveness of tgGBC.

C.4. More Ablation Experiments

We report additional results for different values of 7, n, k in
Tab. 10. As discussed in the main text Sec. 4.2, the optimal
parameter selection varies across different models. If we

3

Model Backbone ImageSize | r k | mAPt NDS{ | mATE| mASE| mAOE| mAVE| mAAE]
|- - - | 3801% 04822 06781 02763 06401 02831 02007

5 150 | 38.04% 04824 | 0.6787 02760 0.6388 0.2838 0.2007
ResNet5S0 704x256 4 175 | 38.04% 04826 | 0.6795 02761 0.6367 02826 02014
2000 3 150 | 37.91% 04813 | 06819 02761 06385 02832 0.2025

2 175 | 3791% 04817 | 0.6787 02758 0.6390 02844 02016

1900 | 37.96% 04822 | 0.6828 02757 0.6373 02794 0.2009

- - - | 4889% 05732 0609 02601 03882 02603 0.1944

5 900 | 48.92% 05734 | 0.6089 02603 03884 02601 0.1942

4 900 | 48.90% 05735 | 0.6082 02601 03871 02598 0.1946

StreamPETR 12000 3 900 | 48.89% 05736 | 0.6076 02599 03870 02595 0.1940
2900 | 4895% 05741 | 0.6074 02605 03858 0.2594 0.1937

1175 | 4885% 05738 | 0.6078 02603 03813 02613 0.1941

5 900 | 48.95% 05743 | 0.6059 02605 03833 02602 0.1944

VovNet 1600x640 4 900 | 48.94% 05744 | 0.6064 02604 03821 02600 0.1943
18000 3 900 | 48.67% 05738 | 0.6054 02617 03701 02627 0.1955

2 900 | 48.85% 05738 | 0.6054 02617 03701 02627 0.1955

1900 | 48.62% 05734 | 0.6087 02613 03705 02628 0.1942

5 000 | 48.92% 05742 | 0.6063 02604 03820 02611 0.1942

4 900 | 4885% 05756 | 0.6015 02614 03659 02616 0.1966

21000 3 175 | 4821% 05702 | 0.6089 02619 03751 0.2669 0.1957

2 900 | 4871% 05731 | 0.6052 02622 03822 02618 0.1933

1900 | 47.87% 05695 | 0.6071 02635 03625 02692 0.1952

|- - - | 47.02% 05657 | 05676 02702 04221 02321 02019

S 000 | 46.98% 0.5648 | 0.5669 02706 04303 02319 0.2015

ResNet50 704x256 4 900 | 47.03% 05649 | 05680 02705 04296 02321 02017
2000 3 900 | 47.02% 05642 | 05685 02706 04345 02324 02028

2 175 | 4685% 05637 | 0.5682 02705 04311 02325 0.2031

1900 | 46.88% 05636 | 0.5687 02721 04332 02315 02026

|- - - | 5207% 06128 | 05250 02566 02811 02148 0.1982

5 175 | 5207% 06126 | 05261 02566 02818 0.2147 0.1985

VovNet 800x320 4 175 | 5206% 06124 | 05267 02566 02823 02144 0.1987
OPEN 3000 3 175 | 52.08% 06127 | 05254 02565 02814 02149 0.1986
2 175 | 52.09% 06129 | 05249 02569 02808 02146 0.1986

1175 | 52.12% 06130 | 05250 02569 02810 02148 0.1985

|- - - | 5180% 06043 | 05314 02679 03457 02095 0.1922

5 900 | 51.78% 0.6033 | 05339 02694 03509 02101 0.1916

4 900 | 51.75% 0.6029 | 0.5333 02693 03544 02109 0.1907

10000 3 900 | 51.58% 06021 | 05372 02695 03496 02107 0.1914

‘ 2 900 | 51.63% 0.6017 | 0538 02713 03542 02102 0.1906
ResNet101 1408x512 1900 | 51.68% 06032 | 05357 02691 03443 02110 0.1921
S 900 | 51.75% 0.6030 | 05346 02698 03525 02109 0.1901

4 900 | 51.78% 0.6024 | 05343 02700 03593 02114 0.1900

12000 3 900 | 51.40% 05991 | 05425 02712 03634 02113 0.1902

2 175 | 5157% 06019 | 05368 02726 03493 02102 0.1905

1175 | 5147% 06018 | 05356 02691 03446 02131 0.1931

Table 10. More results with different r, n and k for StreamPETR and OPEN.

set a 1% mAP drop as the threshold, the maximum number tional level.
of keys that can be pruned varies depending on the model,
and the same applies to n. When 7 is too large or n = 1,
some models may experience a performance drop exceed-
ing 1%. However, the model performance does not com-
pletely degrade into an unusable state but remains at a func-

We have conducted extensive experiments for each
model, but due to space limitations, only a portion of the
results can be presented here. Please refer to our GitHub
repository for additional experimental results.

Model Pruning Method r n mAPt NDSt

- 38.01% 0.4822
tgGBC 37.93% 0.4817
DART 20002 33.88% 0.4513

RANDOM 26.87% 0.3982

StreamPETR

Table 11. Comparison to More baselines.

C.5. Visualization of Attention Focus

The comparison of attention maps before and after pruning
is presented in Fig. 11. It can be observed that tgGBC re-
moves irrelevant keys, thereby making the attention more
concentrated on the objects of interest.

(a) Camera image

(b) Attention focus before
pruning using tgGBC

(c) Attention focus after
pruning using tgGBC

Figure 11. Comparison of attention scores between before and
after pruning.

D. Further Exploration

D.1. Why Some Models Improve in Performance

We can observe that for some models, the mAP and
NDS increase rather than decrease after pruning, such as
FocalPETR-vov-800x320 in Tab. | and StreamPETR-r50-
704x256 with n=4 in Tab. 10. We believe this is related
to the redundant information in the image features. As
shown in Fig. 8, the key is the image feature extracted by
the backbone, which inevitably contains background infor-
mation (such as sky, buildings, etc.) that is ineffective for
object detection. These keys interact with the query and
affect the detection performance.

In the original 3D detectors, for each transformer de-
coder layer, the query is continuously updated, while the
key and value remain unchanged. Therefore, the back-
ground key repeatedly influences the query. In fact, it can be
argued that the “unimportant keys” pruned by our method
are essentially background tokens. It is precisely because
these keys, which interfere with detection, are pruned that
the phenomenon of increased model performance occurs.

D.2. Pruning Queries

While it is possible to prune both keys and queries at run-
time, the latter’s involvement in self-attention operations
limits the extent of pruning. To ensure that the mAP degra-
dation does not exceed 1%, we cannot prune 300 queries,
offering only marginal speed improvements. Conversely,
to achieve significant acceleration in model speed, pruning

600 queries would result in a sharp decline in mAP. The
results are shown in Tab. 12.

We believe that pruning the key is more effective than
pruning the query for the following reasons: The key does
not have explicit self-attention. In contrast, after interacting
with the key, the query is fed into the self-attention mecha-
nism of the next layer. This introduces internal dependen-
cies, meaning that even if a query generates a low classifi-
cation score, its value may influence queries with high clas-
sification scores through self-attention. Therefore, pruning
the query can have a significant impact on the remaining
queries, thereby degrading model performance. In contrast,
the dependencies of the key are indirect, so pruning the key
has a lower impact on model performance. Moreover, keys
contain redundant information more than queries. Please
see the analysis in Appendix D.1.

D.3. Pruning Fully Converged Models

To ensure a fair comparison with prior work while consid-
ering training efficiency, many previous experiments use a
24-epoch training schedule, which often does not achieve
full convergence. To assess whether tgGBC remains ef-
fective after full convergence, we trained a StreamPETR-
ResNet50-704x256 model for 120 epochs. As shown in
Tab. 14, tgGBC preserves the model’s performance even af-
ter full convergence, with only a 0.08% decrease in mAP
and a 0.0007 reduction in NDS.

D.4. Training with tgGBC

If there is a new model, one can also train it with tgGBC
from the beginning, as shown in Tab. 15. Our method is
capable of reducing training time. For example, training
StreamPETR-vov-1600x640 with » = 21000 and n = 1 for
30 epochs takes less time than training without tgGBC for
24 epochs while achieving a better mAP.

D.5. 2D Object Detection Models with tgGBC

As described in Sec. 2.2, the number of keys in ViT-based
methods is significantly smaller than that in 3D object de-
tection methods. Similarly, the number of keys in 2D object
detection is around 1,000 (e.g., in Conditional DETR). This
is also why we focus on 3D object detection rather than ex-
tensively studying 2D object detection methods. Moreover,
current 2D object detection methods are rapidly evolving
and highly mature. Methods based on DETR are not the ab-
solute mainstream, as other approaches, such as the YOLO
series, are still widely used in 2D object detection tasks.
Additionally, 3D object detection is a highly practical
and valuable task. Therefore, from the very beginning, we
focused on pruning 3D object detection models. However,
for some DETR-based 2D detection methods, tgGBC can
still be applied. Here, we take ConditionalDETR as an ex-
ample to verify the effectiveness of tgGBC on 2D object

Model | r q | mAPT NDS? | mATE| mASE| mAOE| mAVE| mAAE | | Dec. Time (ms)
- - | 48.89% 05732 | 0.6096 02601 03882 02603 0.1944 64.93
StreamPETR - | 4855% 05730 | 0.6033 02626 03771 02611 0.1941 34.98
21000 300 | 48.42% 0.5703 | 0.6055 02633 03912 02620 0.1958 34.09
600 | 47.46% 05606 | 0.6239 02661 03952 02826 0.1992 29.42
|- - | 51.80% 0.6043 | 05314 02679 03457 02095 0.1922 | 46.39
OPEN - | 5157% 0.6019 | 05368 02726 03493 02102 0.1905 28.99
12000 300 | 51.48% 0.6014 | 05380 02727 03460 02088 0.1939 2631
600 | 50.24% 05922 | 05542 02732 03524 02144 0.1959 25.97

Table 12. Results of pruning queries. We use StreamPETR-vov-1600x640 and OPEN-r101-1408x512.

Model Backbone | TeGBC | mAP1 APso1 AP751 | AP,t AP, 1 AP;1| Inf. Time (ms) |

ResNets0 . 0421 0623 0442 | 0214 0460 0610 42.06

DETR ‘ v 0414 0620 0436 | 0205 0455 0.603 | 35.24(-16.21%, 1.19x)
ResNet101 - 0435 0638 0463 | 0218 0480 0480 54.61

v 0426 0635 0453 | 0211 0470 0.608 | 47.01(-13.92%, 1.16x)
ResNets0 - 0409 0619 0434 | 0207 0442 0.595 43.88

ConditionalDETR v 0400 0615 0427 | 0.196 0436 0.587 | 40.13 (-8.55%, 1.09x)
ResNet101 - 0428 0636 0459 | 0218 0467 0610 69.97

v 0424 0635 0454 | 0215 0463 0.605 | 55.66 (-20.45%, 1.26x)

Table 13. Results of DETR and ConditionalDETR with tgGBC. Lines with “tgGBC” remaining blank are the original results without

pruning.

r | mAPT NDS?|mATE| mASE| mAOE| mAVE| mAAE|

43.07% 0.5389 | 0.6023 0.2686 0.4238 0.2597 0.2105
2000 | 42.99% 0.5382 | 0.6035 0.2696 0.4230 0.2609 0.2099

Table 14. Pruning fully converged models. We train StreamPETR-
r50-704x256 for 120 epochs to ensure its full convergence. The
first line remaining 7 blank is the original model’s results without
pruning.

r | mAP1 NDS1t | mATE | mASE | mAOE | mAVE | mAAE | | Training Time

- 48.89% 0.5732 | 0.6096 0.2601 0.3882 0.2603 0.1944 2d 14h
21000 | 49.42% 0.5787 | 0.5982 0.2579 0.3651 0.2698 0.1926 2d 13h

Table 15. Training StreamPETR-vov-1600x640 with tgGBC,
while tgGBC is applied, n and k are set to 1 and 175, respectively.

detection methods, as shown in Tab. 13.

In ConditionalDETR, the number of keys is not always
the same. Therefore, we adopt a configuration similar to
MV2D, using r to represent the pruning ratio and set a
threshold t. When the current number of keys exceeds ¢,
pruning is performed. Through experiments, tgGBC can re-
duce the model’s inference time by 19.17% (1.24x) while
keeping the mAP degradation below 1%.

	Query-based 3D Detectors
	Overall Architecture
	Advantages of Dense Methods over Sparse Methods

	Analysis of Computation Cost of Importance Scores
	More Results
	Optimal Results
	More Comparison to ToMe
	Comparison to More Baselines
	More Ablation Experiments
	Visualization of Attention Focus

	Further Exploration
	Why Some Models Improve in Performance
	Pruning Queries
	Pruning Fully Converged Models
	Training with tgGBC
	2D Object Detection Models with tgGBC

