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A. Query-based 3D Detectors
A.1. Overall Architecture
DETR-based methods have become the mainstream ap-
proach for 3D object detection. As shown in Fig. 8 (a),
these methods typically take multi-view images as input and
use an image backbone to extract image features F . Subse-
quently, F is fed into a transformer decoder along with pre-
defined queries Q for interaction. Represented by PETR,
dense methods adopt global attention, allowing Q to inter-
act with F globally. In contrast, sparse methods such as
DETR3D and Far3D employ deformable attention, select-
ing only a subset of F for interaction with Q. The output of
the Transformer Decoder maintains the same shape as the
predefined queries Q. It is passed to classification branches
and regression branches to obtain classification scores and
bounding boxes B. The bounding boxes B not only contain
object location information but also include object size, ori-
entation, velocity, and additional attributes (e.g., whether a
pedestrian is standing, walking, or sitting). During training,
DETR-based methods use a bipartite matching strategy to
associate predictions with ground truth and compute clas-
sification and localization losses. Since ground truth is un-
available during inference, the model selects the final pre-
dictions based on classification scores.

The Transformer decoder used in 3D detectors has a
structure of self-attention followed by cross-attention. The
self-attention module of the first layer takes pre-defined
query Q as input, and its output, together with image fea-
tures, will be fed into the following cross-attention module.
The output of the cross-attention module will be taken as
input by the next layer’s self-attention module. Our method
uses the attention map generated by the cross-attention
modules.

A.2. Advantages of Dense Methods over Sparse
Methods

Since the introduction of DETR, DETR-based methods
have gradually gained prominence in various vision tasks,
including image classification, 2D object detection, 3D ob-
ject detection, semantic segmentation, and object tracking.
However, DETR-based methods also have several draw-
backs, such as high computational cost and slow inference
speed. One major issue is their slow convergence rate.
DETR requires training for several hundred epochs on the
COCO dataset before convergence. To address this, De-
formableDETR was proposed. By utilizing reference points
for local feature sampling, DeformableDETR significantly
speeds up convergence, requiring only 50 epochs on the

Figure 8. (a) Overall architecture of query-based 3D detectors. All
dense models share the same overall structure: an image backbone
followed by a transformer decoder. The transformer decoder con-
sists of multiple stacked transformer layers. (b) The transformer
layer used in the transformer decoder in (a). Each layer has a self-
attention module and a cross-attention module. A CNN head can
be used following the cross-attention module, which inputs up-
dated queries and outputs the classification scores. We use atten-
tion map A ∈ RNq×Nk and classification scores C ∈ RNq to
calculate each key’s importance score.

COCO dataset to achieve the same performance as DETR
trained for 500 epochs. In the 3D object detection domain,
sparse methods have been introduced to accelerate model
convergence while also reducing the computational burden
of the decoder to some extent.

However, our comparison reveals that the overall model
does not achieve a significant increase in inference speed,
nor does it reduce memory consumption. In some cases,
sacrificing performance necessitates additional compen-
satory mechanisms, introducing extra parameters that in-
crease memory usage.

We selected state-of-the-art dense and sparse methods,
OPEN and SparseBEV, respectively, for comparison. From
the comparison in Tab. 6, it can be observed that when us-
ing the same backbone and image resolution, SparseBEV
performs worse than OPEN on the nuScenes validation
set. In terms of memory usage, during inference, Sparse-
BEV consumes more memory than OPEN when using the
same backbone and image resolution. Regarding inference
speed, SparseBEV does not show a significant advantage
over OPEN.



Model Backbone ImageSize mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ Mem. (MiB) ↓ Inf. Time (ms) ↓

SparseBEV ResNet50 704x256 45.45% 0.5559 0.5984 0.2706 0.4124 0.2435 0.1865 5640 77.72
ResNet101 1408x512 50.12% 0.5920 0.5621 0.2648 0.3211 0.2427 0.1947 15386 193.25

OPEN ResNet50 704x256 47.02% 0.5657 0.5676 0.2702 0.4221 0.2321 0.2019 4062 77.25
ResNet101 1408x512 51.80% 0.6043 0.5314 0.2679 0.3457 0.2095 0.1922 10696 196.55

Table 6. Comparison of SparseBEV and OPEN.

In summary, while current dense methods converge more
slowly than sparse methods, they offer advantages in per-
formance and memory usage, without showing a clear dis-
advantage in inference speed. Due to their strong overall
advantages, new dense methods continue to emerge. This
further highlights the importance of our work.

B. Analysis of Computation Cost of Impor-
tance Scores

The FLOPs of Matrix Multiplication. Assume there are
two matrices A ∈ RN×C , B ∈ RM×C . When computing
ABT ∈ RN×M , each row Ai ∈ RC of A is multiplied by
each column Bj ∈ RC of BT , which requires C multipli-
cations and C − 1 additions. Since A has N rows and BT

has M columns, the total computational complexity is:

Fmat mul = N ×M × (C + (C − 1))

= N ×M × (2C − 1)
(11)

The FLOPs of a Multi-head Attention. Given the input
Q ∈ RNq×E , K ∈ RNk×E , and V ∈ RNk×E , a multi-
head attention module with H heads includes the operations
shown in Eq. (1)-Eq. (4).

In Eq. (1), the operations involve matrix multiplications:
one between Q ∈ RNq×E and RE×E , and two between
K,V ∈ RNk×E and RE×E , with a total FLOPs:

Nk · (4E2 − 2E) + 2NqE
2 −NqE (12)

In Eq. (3), where qh ∈ RNq×Eh , kh ∈ RNk×Eh :
1) It first calculates a matrix multiplication qh × (kh)T

with FLOPs NqNk(2Eh − 1). For total H heads, FLOPs
are:

Nk · (2NqE −NqH) (13)

2) Next, a square root is performed to get
√
E with

FLOPs 1.
3) Each element of

(
qh × (kh)T

)
divides

√
E, resulting

in FLOPs of NqNk. For total H heads, FLOPs are:

Nk ·NqH (14)

4) For the Softmax operation with a vector of shape RN

as input, it performs N exponentiations, N−1 additions and
N divisions. Hence, Softmax (·) in Eq. (3) has Nq(3Nk−1)
FLOPs. For total H heads, FLOPs are:

Nk · 3NqH −NqH (15)

5) Next, Oh = Ah × vh has NqEh(2Nk − 1) FLOPs.
For total H heads, FLOPs are:

Nk · 2NqE −NqE (16)

Hence, Eq. (3) and Oh = Ah × vh has FLOPs:

Nk · (4NqE + 3NqH)−NqH −NqE + 1 (17)

Finally, Eq. (4) has FLOPs:

2NqE
2 −NqE (18)

In summary, according to Eq. (12), Eq. (17) and Eq. (18),
a single multi-head attention module with H heads contains
FLOPs as follows:

Fmha(Nk) = λNk + b

λ = 4E2 − 2E + 4NqE + 3NqH

b = 4NqE
2 − 3NqE −NqH + 1

(19)

A transformer layer contains a self-attention module,
a cross-attention module, two layer normalizations and a
feed-forward network. Among these, only cross-module is
related to key with Q ∈ RNq×E ,K, V ∈ RNk×E as inputs.
Hence, its FLOPs are:

FCA(Nk) = Fmha(Nk) (20)

Cost of Computing Importance Scores. To calculate
importance scores, we first need to calculate averaged at-
tention maps A, which involves NqNk(H − 1) additions
and NqNk divisions, with total FLOPs NqNkH . Next, we
calculate S0 = A ⊙ C̃, which contains Nq × Nk multi-
plications. After selection, we compute the sum along the
column of S1(Eq. (9)), which needs Nk(k − 1) additions.
In total, the FLOPs of calculating importance scores are:

FS = NqNkH +NqNk +Nk(k − 1) (21)

Considering a transformer module with L layers apply-
ing tgGBC with r, n, k.

The FLOPs before pruning:

Fbefore = L · FCA(Nk) (22)



Model Backbone ImageSize Nk r GFLOPs Reduced FLOPs

StreamPETR VovNet 1600x640 24000 - 174.91 -
21000 61.44 -64.88%

OPEN ResNet101 1408x512 16896 - 123.55 -
12000 58.84 -52.37%

Table 7. FLOPs reduced of the transformer module after pruning.
We show the results of StreamPETR and OPEN with n = 2, k =
175 for both models. 1 GFLOPs = 109 FLOPs.
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Figure 9. FLOPs decrease with the increase r and the decrease
of n. StreamPETR (OPEN) shown in the figure uses VovNet
(ResNet101) and an image size of 1600× 640 (1408× 512). For
the first line, both models use n=2 and k = 175. For the second
line, StreamPETR (OPEN) uses k = 175 and r=21000 (12000).

The FLOPs after pruning:

Fafter =

n∑
i=0

FCA

(
Nk − i ·

r

n

)
+max(0, L− (n+ 1)) · FCA(Nk − r)

+

n−1∑
i=0

FS

(
Nk − i ·

r

n

) (23)

For different models, we calculate FLOPs before and af-
ter pruning as exhibited in Tab. 7.

According to Eq. (23), the FLOPs decrease linearly with
the increase of r and the decrease of n, as shown in Fig. 9.

As described in Sec. 4.5, the impact of k on inference
time is negligible. This is because when k varies within the
range [1, Nq], its effect on FLOPs is minimal, as shown in
Fig. 10. No matter how k changes, the computational cost
of the Cross-Attention module varies by no more than 0.1
GFLOPs. Compared to the effects of r and n, the influence
of k on inference time can be ignored.
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Figure 10. When k changes, there is almost no change in FLOPs.

C. More Results

C.1. Optimal Results

As described in Sec. 4.2, to facilitate clearer comparison
and save space, we uniformly report the results with n = 2
and k = 175. However, this is not the optimal configura-
tion for every model. Here, the optimal configuration refers
to the maximum value of r and the minimum value of n
that can be applied when the mAP and NDS decrease by
no more than 1%. For the vast majority of models, we can
directly use n = 1 for pruning, as shown in Tab. 8. For mod-
els that have already achieved optimal results, as shown in
Tab. 1 (e.g., PETR-vov, FocalPETR, MV2D, StreamPETR-
vov), we do not repeat the results here.

C.2. More Comparison to ToMe

As described in Sec. 4.3, our method is the first to apply
zero-shot pruning to 3D object detection models. Therefore,
there are no similar methods available for a fair compari-
son. However, we can attempt to transfer zero-shot pruning
methods from the Vision Transformer (ViT) domain to 3D
object detection models. Among these methods, ATS relies
on a classification token specifically designed for classifi-
cation tasks, and Zero-TPrune depends on a square-shaped
attention map. Neither of these features exists in 3D object
detection methods, making it impossible to transfer ATS
and Zero-TPrune to 3D object detection. In contrast, ToMe
does not have a strong dependency on the shape of the atten-
tion map or the classification token. Therefore, we selected
ToMe as the comparison method.

As shown in the Tab. 9, for PETR and MV2D, ToMe
performs extremely poorly—when pruning only 50% of the
keys, the model’s performance completely collapses, with
mAP dropping by more than 10%. In contrast, tgGBC can
maintain model performance. Even when n = 1 and some
results are suboptimal, with mAP dropping by more than
1%, the model does not degrade into an unusable state.



Model Backbone ImageSize Nk r n k mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ Inf. Time(ms) ↓

PETR ResNet50 1408x512 16896 - - - 31.74% 0.3669 0.8392 0.2797 0.6145 0.9521 0.2322 131.94
10000 1 175 30.78% 0.3579 0.8540 0.2832 0.6168 0.9703 0.2354 110.35(-16.36%)

PETRv2 VovNet 800x320 12000 - - - 41.05% 0.5024 0.7232 0.2692 0.4529 0.3896 0.1932 157.52
8000 2 175 40.29% 0.4918 0.7333 0.2750 0.4526 0.4428 0.1930 139.33(-11.55%)

StreamPETR ResNet50 704x256 4224 - - - 38.01% 0.4822 0.6781 0.2763 0.6401 0.2831 0.2007 60.52
2000 1 900 37.96% 0.4822 0.6828 0.2757 0.6373 0.2794 0.2009 51.59(-14.76%)

3DPPE VovNet 800x320 6000 - - - 39.81% 0.4460 0.7040 0.2699 0.4951 0.8438 0.2177 125.13
3000 1 175 39.57% 0.4430 0.7089 0.2729 0.4974 0.8496 0.2201 94.09(-24.81%)

M-BEV VovNet 800x320 12000 - - - 35.14% 0.4640 0.7300 0.2717 0.4980 0.4324 0.1845 178.87
6000 1 175 34.91% 0.4600 0.7379 0.2727 0.5049 0.4428 0.1873 150.93(-15.63%)

OPEN

ResNet50 704x256 4224 - - - 47.02% 0.5657 0.5676 0.2702 0.4221 0.2321 0.2019 77.25
2000 1 900 46.88% 0.5636 0.5687 0.2721 0.2332 0.2315 0.2026 63.31(-18.05%)

VovNet 800x320 6000 - - - 52.07% 0.6128 0.5250 0.2566 0.2811 0.2148 0.1982 118.55
3000 1 175 52.12% 0.6130 0.5250 0.2569 0.2810 0.2148 0.1985 110.21(-7.04%)

ResNet101 1408x512 16896 - - - 51.80% 0.6043 0.5314 0.2679 0.3457 0.2095 0.1922 196.55
12000 1 175 51.47% 0.6018 0.5356 0.2691 0.3446 0.2131 0.1931 174.70(-11.16%)

ToC3D ToC3DViT 1600x800 30000 - - - 54.20% 0.6187 0.5589 0.2571 0.2716 0.2353 0.2007 863.47
27000 1 900 53.31% 0.6121 0.5736 0.2591 0.2713 0.2381 0.2029 809.48(-6.25%)

Table 8. Optimal results for each model.

Model Backbone ImageSize Pruning r n mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

PETR

ResNet50 1408x512

- - - 31.74% 0.3669 0.8392 0.2797 0.6145 0.9521 0.2322

ToMe
8000 2 30.48% 0.3543 0.8708 0.2816 0.6091 0.9852 0.2342
8000 1 29.81% 0.3490 0.8714 0.2823 0.6173 0.9878 0.2418
12000 2 29.63% 0.3461 0.8859 0.2836 0.6198 0.9895 0.2412

Ours
8000 2 31.22% 0.3639 0.8436 0.2808 0.6133 0.9517 0.2329
8000 1 31.58% 0.3651 0.8418 0.2801 0.6148 0.9576 0.2330
12000 2 30.78% 0.3579 0.8540 0.2832 0.6168 0.9703 0.2354

VovNet 1600x640

- - - 40.45% 0.4517 0.7287 0.2706 0.4485 0.8399 0.2178

ToMe
12000 2 21.88% 0.2835 0.9517 0.4471 0.5913 1.0230 0.2688
12000 1 27.17% 0.3350 0.8710 0.3560 0.5512 0.9959 0.2342
18000 2 26.58% 0.3162 0.9143 0.4300 0.5663 1.0210 0.2564

Ours
12000 2 40.42% 0.4502 0.7305 0.2702 0.4501 0.8512 0.2172
12000 1 39.37% 0.4425 0.7429 0.2722 0.4592 0.8517 0.2174
18000 2 39.53% 0.4432 0.7482 0.2720 0.4538 0.8539 0.2167

3DPPE VovNet 800x320

- - - 39.81% 0.4460 0.7040 0.2699 0.4951 0.8438 0.2177

ToMe 2000 2 39.56% 0.4432 0.7083 0.2715 0.4972 0.8490 0.2198
1 36.99% 0.4197 0.7500 0.2719 0.5337 0.8735 0.2233

Ours 2000 2 39.74% 0.4449 0.7057 0.2707 0.4956 0.8465 0.2202
1 39.57% 0.4430 0.7089 0.2729 0.4974 0.8496 0.2201

MV2D ResNet50 1408x512

- - - 44.92% 0.5399 0.6246 0.2657 0.3840 0.4009 0.1722

ToMe 50% 2 13.62% 0.2754 0.9028 0.3472 0.7737 0.6777 0.2261
1 13.45% 0.2721 0.9000 0.3477 0.7890 0.6864 0.2286

Ours 50% 2 44.11% 0.5384 0.6248 0.2657 0.3844 0.4024 0.1717
1 41.17% 0.5183 0.6289 0.2693 0.3887 0.4165 0.1717

Table 9. More results of comparison to ToMe [1]. Due to the use of bipartite matching, ToMe cannot prune more than 50% of keys in one
layer; hence, some results of r > Nk/2 are lacking.

C.3. Comparison to More Baselines

We also add comparisons with DART[37] and random prun-
ing in Tab. 11 to demonstrate the effectiveness of tgGBC.

C.4. More Ablation Experiments

We report additional results for different values of r, n, k in
Tab. 10. As discussed in the main text Sec. 4.2, the optimal
parameter selection varies across different models. If we



Model Backbone ImageSize r n k mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

StreamPETR

ResNet50 704x256

- - - 38.01% 0.4822 0.6781 0.2763 0.6401 0.2831 0.2007

2000

5 150 38.04% 0.4824 0.6787 0.2760 0.6388 0.2838 0.2007
4 175 38.04% 0.4826 0.6795 0.2761 0.6367 0.2826 0.2014
3 150 37.91% 0.4813 0.6819 0.2761 0.6385 0.2832 0.2025
2 175 37.91% 0.4817 0.6787 0.2758 0.6390 0.2844 0.2016
1 900 37.96% 0.4822 0.6828 0.2757 0.6373 0.2794 0.2009

VovNet 1600x640

- - - 48.89% 0.5732 0.6096 0.2601 0.3882 0.2603 0.1944

12000

5 900 48.92% 0.5734 0.6089 0.2603 0.3884 0.2601 0.1942
4 900 48.90% 0.5735 0.6082 0.2601 0.3871 0.2598 0.1946
3 900 48.89% 0.5736 0.6076 0.2599 0.3870 0.2595 0.1940
2 900 48.95% 0.5741 0.6074 0.2605 0.3858 0.2594 0.1937
1 175 48.85% 0.5738 0.6078 0.2603 0.3813 0.2613 0.1941

18000

5 900 48.95% 0.5743 0.6059 0.2605 0.3833 0.2602 0.1944
4 900 48.94% 0.5744 0.6064 0.2604 0.3821 0.2600 0.1943
3 900 48.67% 0.5738 0.6054 0.2617 0.3701 0.2627 0.1955
2 900 48.85% 0.5738 0.6054 0.2617 0.3701 0.2627 0.1955
1 900 48.62% 0.5734 0.6087 0.2613 0.3705 0.2628 0.1942

21000

5 900 48.92% 0.5742 0.6063 0.2604 0.3820 0.2611 0.1942
4 900 48.85% 0.5756 0.6015 0.2614 0.3659 0.2616 0.1966
3 175 48.21% 0.5702 0.6089 0.2619 0.3751 0.2669 0.1957
2 900 48.71% 0.5731 0.6052 0.2622 0.3822 0.2618 0.1933
1 900 47.87% 0.5695 0.6071 0.2635 0.3625 0.2692 0.1952

OPEN

ResNet50 704x256

- - - 47.02% 0.5657 0.5676 0.2702 0.4221 0.2321 0.2019

2000

5 900 46.98% 0.5648 0.5669 0.2706 0.4303 0.2319 0.2015
4 900 47.03% 0.5649 0.5680 0.2705 0.4296 0.2321 0.2017
3 900 47.02% 0.5642 0.5685 0.2706 0.4345 0.2324 0.2028
2 175 46.85% 0.5637 0.5682 0.2705 0.4311 0.2325 0.2031
1 900 46.88% 0.5636 0.5687 0.2721 0.4332 0.2315 0.2026

VovNet 800x320

- - - 52.07% 0.6128 0.5250 0.2566 0.2811 0.2148 0.1982

3000

5 175 52.07% 0.6126 0.5261 0.2566 0.2818 0.2147 0.1985
4 175 52.06% 0.6124 0.5267 0.2566 0.2823 0.2144 0.1987
3 175 52.08% 0.6127 0.5254 0.2565 0.2814 0.2149 0.1986
2 175 52.09% 0.6129 0.5249 0.2569 0.2808 0.2146 0.1986
1 175 52.12% 0.6130 0.5250 0.2569 0.2810 0.2148 0.1985

ResNet101 1408x512

- - - 51.80% 0.6043 0.5314 0.2679 0.3457 0.2095 0.1922

10000

5 900 51.78% 0.6033 0.5339 0.2694 0.3509 0.2101 0.1916
4 900 51.75% 0.6029 0.5333 0.2693 0.3544 0.2109 0.1907
3 900 51.58% 0.6021 0.5372 0.2695 0.3496 0.2107 0.1914
2 900 51.63% 0.6017 0.5386 0.2713 0.3542 0.2102 0.1906
1 900 51.68% 0.6032 0.5357 0.2691 0.3443 0.2110 0.1921

12000

5 900 51.75% 0.6030 0.5346 0.2698 0.3525 0.2109 0.1901
4 900 51.78% 0.6024 0.5343 0.2700 0.3593 0.2114 0.1900
3 900 51.40% 0.5991 0.5425 0.2712 0.3634 0.2113 0.1902
2 175 51.57% 0.6019 0.5368 0.2726 0.3493 0.2102 0.1905
1 175 51.47% 0.6018 0.5356 0.2691 0.3446 0.2131 0.1931

Table 10. More results with different r, n and k for StreamPETR and OPEN.

set a 1% mAP drop as the threshold, the maximum number
of keys that can be pruned varies depending on the model,
and the same applies to n. When r is too large or n = 1,
some models may experience a performance drop exceed-
ing 1%. However, the model performance does not com-
pletely degrade into an unusable state but remains at a func-

tional level.

We have conducted extensive experiments for each
model, but due to space limitations, only a portion of the
results can be presented here. Please refer to our GitHub
repository for additional experimental results.



Model Pruning Method r n mAP↑ NDS↑

StreamPETR

-

2000 2

38.01% 0.4822
tgGBC 37.93% 0.4817
DART 33.88% 0.4513

RANDOM 26.87% 0.3982

Table 11. Comparison to More baselines.

C.5. Visualization of Attention Focus

The comparison of attention maps before and after pruning
is presented in Fig. 11. It can be observed that tgGBC re-
moves irrelevant keys, thereby making the attention more
concentrated on the objects of interest.

Figure 11. Comparison of attention scores between before and
after pruning.

D. Further Exploration

D.1. Why Some Models Improve in Performance

We can observe that for some models, the mAP and
NDS increase rather than decrease after pruning, such as
FocalPETR-vov-800x320 in Tab. 1 and StreamPETR-r50-
704x256 with n=4 in Tab. 10. We believe this is related
to the redundant information in the image features. As
shown in Fig. 8, the key is the image feature extracted by
the backbone, which inevitably contains background infor-
mation (such as sky, buildings, etc.) that is ineffective for
object detection. These keys interact with the query and
affect the detection performance.

In the original 3D detectors, for each transformer de-
coder layer, the query is continuously updated, while the
key and value remain unchanged. Therefore, the back-
ground key repeatedly influences the query. In fact, it can be
argued that the “unimportant keys” pruned by our method
are essentially background tokens. It is precisely because
these keys, which interfere with detection, are pruned that
the phenomenon of increased model performance occurs.

D.2. Pruning Queries

While it is possible to prune both keys and queries at run-
time, the latter’s involvement in self-attention operations
limits the extent of pruning. To ensure that the mAP degra-
dation does not exceed 1%, we cannot prune 300 queries,
offering only marginal speed improvements. Conversely,
to achieve significant acceleration in model speed, pruning

600 queries would result in a sharp decline in mAP. The
results are shown in Tab. 12.

We believe that pruning the key is more effective than
pruning the query for the following reasons: The key does
not have explicit self-attention. In contrast, after interacting
with the key, the query is fed into the self-attention mecha-
nism of the next layer. This introduces internal dependen-
cies, meaning that even if a query generates a low classifi-
cation score, its value may influence queries with high clas-
sification scores through self-attention. Therefore, pruning
the query can have a significant impact on the remaining
queries, thereby degrading model performance. In contrast,
the dependencies of the key are indirect, so pruning the key
has a lower impact on model performance. Moreover, keys
contain redundant information more than queries. Please
see the analysis in Appendix D.1.

D.3. Pruning Fully Converged Models
To ensure a fair comparison with prior work while consid-
ering training efficiency, many previous experiments use a
24-epoch training schedule, which often does not achieve
full convergence. To assess whether tgGBC remains ef-
fective after full convergence, we trained a StreamPETR-
ResNet50-704x256 model for 120 epochs. As shown in
Tab. 14, tgGBC preserves the model’s performance even af-
ter full convergence, with only a 0.08% decrease in mAP
and a 0.0007 reduction in NDS.

D.4. Training with tgGBC
If there is a new model, one can also train it with tgGBC
from the beginning, as shown in Tab. 15. Our method is
capable of reducing training time. For example, training
StreamPETR-vov-1600x640 with r = 21000 and n = 1 for
30 epochs takes less time than training without tgGBC for
24 epochs while achieving a better mAP.

D.5. 2D Object Detection Models with tgGBC
As described in Sec. 2.2, the number of keys in ViT-based
methods is significantly smaller than that in 3D object de-
tection methods. Similarly, the number of keys in 2D object
detection is around 1,000 (e.g., in ConditionalDETR). This
is also why we focus on 3D object detection rather than ex-
tensively studying 2D object detection methods. Moreover,
current 2D object detection methods are rapidly evolving
and highly mature. Methods based on DETR are not the ab-
solute mainstream, as other approaches, such as the YOLO
series, are still widely used in 2D object detection tasks.

Additionally, 3D object detection is a highly practical
and valuable task. Therefore, from the very beginning, we
focused on pruning 3D object detection models. However,
for some DETR-based 2D detection methods, tgGBC can
still be applied. Here, we take ConditionalDETR as an ex-
ample to verify the effectiveness of tgGBC on 2D object



Model r q mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ Dec. Time (ms)

StreamPETR

- - 48.89% 0.5732 0.6096 0.2601 0.3882 0.2603 0.1944 64.93

21000
- 48.55% 0.5730 0.6033 0.2626 0.3771 0.2611 0.1941 34.98

300 48.42% 0.5703 0.6055 0.2633 0.3912 0.2620 0.1958 34.09
600 47.46% 0.5606 0.6239 0.2661 0.3952 0.2826 0.1992 29.42

OPEN

- - 51.80% 0.6043 0.5314 0.2679 0.3457 0.2095 0.1922 46.39

12000
- 51.57% 0.6019 0.5368 0.2726 0.3493 0.2102 0.1905 28.99

300 51.48% 0.6014 0.5389 0.2727 0.3460 0.2088 0.1939 26.31
600 50.24% 0.5922 0.5542 0.2732 0.3524 0.2144 0.1959 25.97

Table 12. Results of pruning queries. We use StreamPETR-vov-1600x640 and OPEN-r101-1408x512.

Model Backbone TgGBC mAP ↑ AP50 ↑ AP75 ↑ APs ↑ APm ↑ APl ↑ Inf. Time (ms) ↓

DETR
ResNet50 - 0.421 0.623 0.442 0.214 0.460 0.610 42.06

✓ 0.414 0.620 0.436 0.205 0.455 0.603 35.24(-16.21%, 1.19x)

ResNet101 - 0.435 0.638 0.463 0.218 0.480 0.480 54.61
✓ 0.426 0.635 0.453 0.211 0.470 0.608 47.01(-13.92%, 1.16x)

ConditionalDETR
ResNet50 - 0.409 0.619 0.434 0.207 0.442 0.595 43.88

✓ 0.400 0.615 0.427 0.196 0.436 0.587 40.13 (-8.55%, 1.09x)

ResNet101 - 0.428 0.636 0.459 0.218 0.467 0.610 69.97
✓ 0.424 0.635 0.454 0.215 0.463 0.605 55.66 (-20.45%, 1.26x)

Table 13. Results of DETR and ConditionalDETR with tgGBC. Lines with “tgGBC” remaining blank are the original results without
pruning.

r mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
- 43.07% 0.5389 0.6023 0.2686 0.4238 0.2597 0.2105

2000 42.99% 0.5382 0.6035 0.2696 0.4230 0.2609 0.2099

Table 14. Pruning fully converged models. We train StreamPETR-
r50-704x256 for 120 epochs to ensure its full convergence. The
first line remaining r blank is the original model’s results without
pruning.

r mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ Training Time

- 48.89% 0.5732 0.6096 0.2601 0.3882 0.2603 0.1944 2d 14h
21000 49.42% 0.5787 0.5982 0.2579 0.3651 0.2698 0.1926 2d 13h

Table 15. Training StreamPETR-vov-1600x640 with tgGBC,
while tgGBC is applied, n and k are set to 1 and 175, respectively.

detection methods, as shown in Tab. 13.
In ConditionalDETR, the number of keys is not always

the same. Therefore, we adopt a configuration similar to
MV2D, using r to represent the pruning ratio and set a
threshold t. When the current number of keys exceeds t,
pruning is performed. Through experiments, tgGBC can re-
duce the model’s inference time by 19.17% (1.24×) while
keeping the mAP degradation below 1%.
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