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A. Additional Implementation Details
In this section, we provide a comprehensive overview of
the datasets, hyperparameter settings, and the training and
evaluation protocols employed in our experiments.

A.1. Datasets
In this work, we conduct extensive experiments across vary-
ing driving datasets, covering both urban and campus driv-
ing environments, various LiDAR sensor configurations,
and a wide range of static and dynamic object distributions.
Our datasets span real-world and synthetic scenarios, en-
abling a comprehensive evaluation of model performance
across different environmental conditions. Below, we pro-
vide a detailed overview of each dataset used in this work:
• nuScenes [5]: A large-scale, multi-modality dataset de-

signed for autonomous driving, featuring a 32-beam Li-
DAR and six cameras capturing diverse urban driving
scenes. The dataset consists of 1, 000 sequences collected
in Boston and Singapore, with a standard split of 700
training, 150 validation, and 150 testing scenes. For pre-
training, we adopt the SLidR [18] protocol, partitioning

the training set into a mini-train/val split (600 training,
100 validation). To systematically analyze model perfor-
mance under different data availability levels, we con-
struct sub-training sets by uniformly sampling 1%, 5%,
10%, 25%, and 100% of the training data for fine-tuning.

• SemanticKITTI [1]: A large-scale dataset tailored for
semantic scene understanding in autonomous driving,
featuring high-resolution 3D point clouds captured by a
64-beam LiDAR sensor. It provides dense point-wise an-
notations for all 22 sequences from the KITTI Odometry
Benchmark [6], covering a diverse range of driving en-
vironments, including urban streets, highways, and res-
idential areas. This dataset serves as a benchmark for
evaluating semantic segmentation models in real-world
autonomous driving scenarios. To systematically assess
model performance in data-efficient settings, we con-
struct a 1% sub-training set by uniformly sampling train-
ing scans, enabling experiments in low-data regimes.

• Waymo Open [21]: A large-scale dataset collected
from real-world autonomous driving scenarios, compris-
ing 1, 150 driving sequences – 798 for training, 202 for
validation, and 150 for testing. The dataset is captured
using a multi-LiDAR setup, consisting of one mid-range
and four short-range LiDAR sensors, enabling the col-
lection of dense and diverse point clouds across differ-
ent traffic conditions. To assess model performance in
data-efficient settings, we construct a 1% sub-training set
through uniform sampling of the training scans.

• ScribbleKITTI [22]: A weakly labeled variant of the Se-
manticKITTI dataset [1], where annotations are provided
as sparse line scribbles instead of dense point-wise labels.
This dataset is specifically designed to advance research
in weakly supervised learning for semantic segmentation
in autonomous driving, reducing the reliance on expen-
sive manual annotations. By leveraging its sparse annota-
tions, models can be trained to learn robust semantic rep-
resentations with limited supervision. In this work, we
construct 1% and 10% sub-training sets through uniform
sampling to systematically investigate the effectiveness of
weak supervision in data-efficient learning scenarios.

• RELLIS-3D [7]: A multimodal dataset collected in off-
road environments at the Rellis Campus of Texas A&M
University, specifically designed to support research in
unstructured terrain scenarios. This dataset contains di-
verse and complex scenes with vegetation, rough sur-
faces, and varying elevations, posing challenges distinct
from structured urban driving. In this work, we construct
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1% and 10% sub-training sets to systematically evaluate
model generalization in non-urban environments.

• SemanticPOSS [14]: A small-scale dataset collected in
off-road environments at Peking University, designed to
evaluate the performance of autonomous perception sys-
tems in complex, unstructured scenes. It captures diverse
scenarios involving both static and dynamic objects, fea-
turing dense point clouds that pose challenges distinct
from structured urban settings. The dataset comprises 6
sequences, providing a compact yet challenging bench-
mark for semantic segmentation. In this work, we utilize
sequences 00 and 01 to form a half sub-training set, while
sequences 00 to 05 (excluding 02 for validation) consti-
tute the full training set, ensuring a systematic evaluation
of model performance in off-road conditions.

• SemanticSTF [24]: A dataset specifically designed to
evaluate the robustness of LiDAR-based perception mod-
els under adverse weather conditions. It includes four
challenging scenarios: “snowy”, “dense fog”, “light
fog”, and “rain”, simulating real-world environmental
variations that can significantly impact LiDAR sensor
performance. Captured across diverse outdoor settings,
this dataset serves as a critical benchmark for assessing
the degradation of semantic segmentation models when
exposed to extreme weather conditions. To systematically
analyze model performance in data-efficient learning set-
tings, we construct both half and full sub-training sets by
uniformly sampling training scans.

• SynLiDAR [23]: A large-scale synthetic dataset gener-
ated using Unreal Engine 4, designed to simulate diverse
LiDAR perception scenarios in unstructured virtual envi-
ronments. It consists of 13 sequences, totaling 198, 396
scans, providing high-quality point clouds that closely
mimic real-world sensor data while eliminating the need
for costly manual annotations. The dataset covers vari-
ous terrains and object distributions, making it a valuable
resource for studying domain adaptation and generaliza-
tion in LiDAR-based perception models. In this work, we
construct 1% and 10% sub-training sets through uniform
sampling to systematically evaluate model performance.

• DAPS-3D [8]: A dataset comprising two subsets: DAPS-
1, a semi-synthetic collection featuring large-scale 3D
scenes, and DAPS-2, which contains real-world LiDAR
scans recorded by a cleaning robot operating in VDNH
Park, Moscow. This dataset is specifically designed to fa-
cilitate research on domain adaptation and semi-synthetic
training paradigms by bridging the gap between syn-
thetic and real-world data. In this work, we extract
training scans from the sequence “38-18 7 72 90” within
the DAPS-1 subset and construct both half and full sub-
training sets to evaluate model performance.

• Synth4D [17]: A synthetic dataset generated using
the CARLA simulator, designed to replicate real-world

driving conditions with Velodyne LiDAR sensors. It
comprises two subsets: Synth4D-KITTI and Synth4D-
nuScenes, each crafted to closely resemble their respec-
tive real-world counterparts. In this work, we utilize
the Synth4D-nuScenes subset and construct 1% and 10%
sub-training sets by uniformly sampling training scans to
assess model performance in low-data regimes.

• nuScenes-C [9]: An extension of the nuScenes dataset
[3], designed to evaluate the robustness of LiDAR-based
perception models under challenging environmental con-
ditions. The dataset introduces eight types of synthetic
corruptions – “fog”, “wet ground”, “snow”, “motion
blur”, “beam missing”, “crosstalk”, “implement echo”,
and “cross-sensor” – each with three severity levels:
easy, moderate, and hard. These corruptions simulate
the real-world effects of sensor degradation and environ-
mental disturbances, such as bad weather or sensor mal-
functions, that can degrade perception performance. This
dataset serves as a benchmark to assess model resilience
against these distortions, providing a comprehensive tool
to evaluate the reliability and robustness of perception
systems, particularly in autonomous driving applications.

A.2. Training Configurations

Image Preprocessing. For image-based inputs, we apply
standard data augmentation techniques. Specifically, we ap-
ply horizontal flipping with a 50% probability and resize all
input images to a fixed resolution of 448×224 pixels to en-
sure consistency across different datasets. Following ScaLR
[16], in this work, we do not utilize any Vision Foundation
Models (VFMs) to generate superpixels in this work.
Point Cloud Preprocessing. For LiDAR point clouds,
we employ a set of geometric transformations to enhance
data diversity during training. We apply random rotations
around the z-axis within the range of [−180◦, 180◦], which
accounts for minor variations in sensor orientation. Addi-
tionally, we randomly flip the point cloud along the x-axis
and y-axis with a probability of 50% each. To introduce
scale invariance, we apply a random scaling factor sampled
uniformly from the range [0.95, 1.05]. Finally, we voxelize
the point cloud using a cylindrical partitioning strategy with
a voxel resolution of 0.1 meters.
Optimization. We employ the AdamW optimizer [12] for
training, with an initial learning rate of 0.01. To dynami-
cally adjust the learning rate, we adopt the OneCycle learn-
ing rate scheduler [20]. The per-GPU batch size is set to
2, resulting in a total batch size of 16 across 8 GPUs. For
downstream fine-tuning, we apply a differentiated learning
rate strategy. The backbone network is trained with a lower
learning rate, while the task-specific head is updated with a
learning rate that is 10× higher to facilitate rapid adaptation
to new tasks. Fine-tuning experiments are conducted across
multiple data regimes, systematically evaluating model per-
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formance under varying levels of data availability.

A.3. Evaluation Configurations
This section outlines the evaluation metrics used to assess
model performance in 3D semantic segmentation, robust-
ness evaluation, and 3D object detection. Each metric is de-
signed to quantify different aspects of model effectiveness.
3D Semantic Segmentation. We follow standard eval-
uation practices by reporting the Intersection-over-Union
(IoU) for each category and the mean IoU (mIoU) across
all categories. The IoU for a given class i is defined as:

IoUi =
TPi

TPi + FPi + FNi
, (1)

where TPi (True Positives) denotes correctly classified
points, FPi (False Positives) represents incorrectly pre-
dicted points, and FNi (False Negatives) accounts for mis-
classified ground-truth points. Higher IoU values indicate
better segmentation accuracy. The mean IoU (mIoU) is
computed as the average IoU across all classes:

mIoU =
1

|C|
∑
i∈C

IoUi , (2)

where C represents the set of all semantic categories. mIoU
provides a holistic measure of overall segmentation quality.
Robustness Evaluation. To evaluate model robustness
against real-world perturbations, we adopt the Corruption
Error (CE) and Resilience Rate (RR) metrics, following the
Robo3D [9] evaluation protocol. These metrics assess per-
formance under various corruption types, including sensor
noise, adverse weather conditions, and motion blur.
• Corruption Error (CE). CE quantifies the model’s per-

formance degradation under corruption type i, defined as:

CEi =

∑3
j=1(1− IoUi,j)∑3
j=1(1− IoUbase

i,j )
, (3)

where IoUi,j represents the mIoU under corruption type
i at severity level j, and IoUbase

i,j is the mIoU of a base-
line model under the same conditions. Lower CE values
indicate greater robustness, meaning the model maintains
performance even under significant corruption.

• Resilience Rate (RR). RR measures the model’s ability
to recover from corruptions, computed as:

RRi =

∑3
j=1 IoUi,j

3× IoUclean , (4)

where IoUclean represents the mIoU on the “clean” valida-
tion set, which serves as a reference for the model’s per-
formance under ideal conditions. A higher RR signifies
greater resilience to external disturbances.

Additionally, we report the mean Corruption Error (mCE)
and mean Resilience Rate (mRR) across all corruption types
to summarize overall robustness.
3D Object Detection. We evaluate 3D object detection per-
formance using the mean Average Precision (mAP) and the
nuScenes Detection Score (NDS), following nuScenes [3].

• Mean Average Precision (mAP). mAP is computed
by averaging the Average Precision (AP) across object
classes and distance-based matching thresholds:

mAP =
1

|C||D|
∑
c∈C

∑
d∈D

APc,d , (5)

where C denotes the set of object categories, and D =
{0.5, 1, 2, 4} represents different distance thresholds used
for AP computation. mAP evaluates detection accu-
racy by considering both localization precision and recall
across various object classes and distances.

• nuScenes Detection Score (NDS). NDS provides a com-
prehensive evaluation by combining mAP with additional
detection quality metrics, computed as:

NDS =
1

10
[5mAP +

∑
mTP∈TP

(1−min(1,mTP))] , (6)

where mTP is the mean true positive metric calculated
across all object classes, representing the average number
of true positives per class:

mTP =
1

|C|
∑
c∈C

TPc . (7)

NDS captures both detection accuracy and localization
precision, making it a more holistic metric for evaluating
3D object detection performance.

B. Additional Quantitative Results

In this section, we provide a detailed evaluation of class-
wise LiDAR semantic segmentation performance, showing
the advantages of our approach over existing methods.

B.1. Class-Wise Linear Probing Results
Tab. B presents the class-wise IoU scores for linear prob-
ing experiments. To ensure a fair comparison, we reimple-
mented ScaLR [16] based on the technical details provided
in the original paper and publicly available code. The re-
sults show that LiMA consistently outperforms prior state-
of-the-art methods across most categories, with particularly
notable gains in the segmentation of dynamic objects. This
improvement highlights LiMA’s capability to capture rich
spatiotemporal representations, which are crucial for under-
standing moving entities in autonomous driving scenarios.
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B.2. Class-Wise Fine-Tuning Results
We report the class-wise IoU scores for 1% fine-tuning ex-
periments in Tab. C. Compared to the baseline [16], LiMA
achieves significant performance gains across most cate-
gories. These improvements stem from LiMA’s ability
to leverage temporal feature distillation, effectively cap-
turing long-term dependencies for enhanced feature learn-
ing. However, we observe performance degradation in cer-
tain underrepresented categories, likely due to class imbal-
ance. This suggests potential avenues for future work, such
as incorporating class-aware optimization strategies or re-
weighting schemes to mitigate the impact of data sparsity.

B.3. Knowledge Distillation Strategy
In the main page, knowledge distillation is employed to
transfer long-term temporally fused image features Fd into
LiDAR representations Fp. In this section, we provide a
detailed overview of commonly used distillation strategies
and analyze their effectiveness in this context.
• Cosine Similarity enforces alignment between feature

representations by measuring their angular difference
while being invariant to feature magnitudes. The corre-
sponding loss function is formulated as:

Lcos(Fd,Fp) =
1

M

M∑
i=1

(1− ⟨f id, f ip⟩) , (8)

where M denotes the number of corresponding point-
pixel pairs, and ⟨·, ·⟩ is the dot product. By minimizing
Lcos, the LiDAR representation Fp is encouraged to learn
features with a similar directional alignment to Fd.

• ℓ2 distance objective minimizes the Euclidean distance
between the teacher and student representations, enforc-
ing consistency while preserving feature magnitudes:

Ldist(Fd,Fp) =
1

M

M∑
i=1

∥f id − f ip∥2 . (9)

This formulation ensures that Fp closely approximates
the fine-grained feature structure of Fd.

• Contrastive Learning enhances feature discrimination
by bringing positive pairs closer while pushing negative
pairs apart. The contrastive loss is formulated as:

Lcont(Fd,Fp) = − 1

M

M∑
i=1

log
e⟨f

i
d,f

i
p⟩/τ∑M

j=1 e
⟨f id,f

j
p⟩/τ

, (10)

where τ > 0 is a temperature scale factor. This loss func-
tion encourages Fp to learn meaningful and discrimina-
tive features from Fd. In our implementation, we follow
PPKT [11] and randomly sample 4096 pairs to construct
a contrastive objective.

Table A. Comparison of different distillation strategies.

# Distillation nuScenes KITTI Waymo
LP 1% 1% 1%

(a) Cosine Similarity 51.23 48.23 47.34 47.84
(b) ℓ2 Distance 56.65 51.29 50.44 51.35
(c) Contrastive Learning 54.23 50.34 48.86 50.23
(d) KL Divergence 55.34 49.53 49.43 50.46

• Kullback-Leibler (KL) Divergence measures the dis-
crepancy between two probability distributions, aligning
the student’s predictive distribution with the teacher’s.
The KL divergence loss is defined as:

LKL(Fd,Fp) =
1

M

M∑
i=1

f id log
f id
f ip

. (11)

By minimizing LKL, Fp is encouraged to approximate the
predictive distribution of Fd, leading to improved gener-
alization performance.
Tab. A presents a comparative analysis of various distil-

lation strategies. Our results indicate that the ℓ2 distance
metric achieves the highest overall performance. The co-
sine similarity-based approach, which focuses solely on an-
gular alignment, proves inadequate for feature alignment as
it disregards magnitude differences – an essential aspect of
representation learning. Contrastive learning aims to en-
hance feature discrimination by pulling positive pairs closer
while pushing negatives apart, but this objective may not
be optimal for direct feature matching in distillation. KL
divergence effectively aligns predictive distributions but is
susceptible to data distribution shifts, particularly in low-
data regimes. In contrast, ℓ2 distance minimizes Euclidean
discrepancy directly, ensuring a more stable and effective
optimization objective for knowledge transfer.

C. Additional Qualitative Results

In this section, we present additional qualitative examples
to provide a visual comparison of the different approaches
discussed in the main body of the paper.

C.1. LiDAR Semantic Segmentation Results
Fig. A, Fig. B, and Fig. C showcase qualitative LiDAR
semantic segmentation results, comparing LiMA with the
baseline method [16] on the nuScenes [5], SemanticKITTI
[1], and Waymo Open [21] datasets, respectively. The mod-
els were pretrained on nuScenes [3] and fine-tuned using 1%
of the available annotations from each dataset. As shown,
LiMA consistently outperforms the baseline in most cate-
gories, especially for dynamic objects such as vehicles.

In particular, LiMA can leverage long-term temporal
features and align spatial-temporal information, enabling
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more accurate segmentation in scenarios where objects ex-
hibit rapid motion or change. The error maps further high-
light its superior performance, with fewer misclassifications
and better localization of the dynamic objects compared to
the baseline, showing the robustness of LiMA to both the
dataset’s limited annotations and its inherent complexity.

C.2. 3D Object Detection Results

Fig. D presents qualitative LiDAR detection results, com-
paring LiMA with the baseline method [16] on the nuScenes
[3] dataset, where models were fine-tuned using 5% of the
available annotations. For better visualization, the confi-
dence threshold is set to 0.5. As shown, LiMA consistently
outperforms the baseline by producing accurate and confi-
dent bounding boxes, particularly for small objects.

The long-term memory mechanism effectively propa-
gates and aggregates temporal features, improving object
localization and mitigating false positives. In particular,
it demonstrates superior performance in detecting dynamic
objects such as pedestrians and vehicles, which often suffer
from motion-induced distortions. The error analysis high-
lights LiMA’s ability to maintain spatial-temporal consis-
tency, resulting in fewer missed detections and more stable
bounding box predictions.

C.3. Cosine Similarity Results

In Fig. E, we present additional cosine similarity maps com-
puted during the pretraining phase. These maps provide an
intuitive understanding of how well LiMA aligns the image
and LiDAR point features within the same semantic space.
The cosine similarity score, which measures the angular dif-
ference between features, is used to evaluate the consistency
and semantic relevance between image and LiDAR data.

As depicted, the query point (indicated by the red dot)
exhibits high cosine similarity with both the corresponding
image and LiDAR point features projected onto the image
plane. This demonstrates our ability to effectively bridge
the gap between two sensor modalities – image and LiDAR
– by learning a shared feature space that preserves seman-
tic consistency across them. The resulting high similarity
scores (represented in red) indicate that LiMA succeeds in
aligning the visual and LiDAR representations, enhancing
its capacity to transfer knowledge across modalities and im-
prove feature fusion for downstream tasks.

D. Broad Impact & Limitations

In this section, we discuss the broader impact of our pro-
posed LiMA framework, highlighting its contributions to
autonomous perception and beyond. Additionally, we out-
line potential limitations and areas for future improvement.

D.1. Broader Impact
The LiMA framework introduces a novel approach to learn-
ing robust LiDAR-based representations through long-term
temporal modeling and cross-modal feature alignment. This
has several significant implications for both academic re-
search and real-world applications:
Advancing Data-Efficient Perception. By effectively
leveraging pretraining with limited labeled data, LiMA re-
duces reliance on large-scale human annotations, address-
ing one of the primary bottlenecks in deep learning for 3D
perception. This advancement is particularly valuable for
safety-critical applications where data collection is expen-
sive or infeasible, such as autonomous driving and robotics.
Improving Robustness in Dynamic Environments.
Through explicit modeling of temporal and spatial depen-
dencies, LiMA enhances the ability to segment dynamic
objects with high accuracy. This contributes to improved
situational awareness and decision-making for autonomous
systems in complex and rapidly changing environments.
Facilitating Cross-Modal Learning. The ability to align
image and LiDAR features in a shared representation space
enhances multi-sensor fusion strategies. This can benefit
perception tasks beyond segmentation, including object de-
tection, tracking, and scene understanding, enabling more
effective deployment in real-world settings.
Potential for Transfer Learning and Generalization. The
insights from LiMA’s pretraining strategies can be applied
to a broader range of 3D vision tasks, fostering new research
directions in self-supervised learning, domain adaptation,
and transfer learning for sparse and multimodal data.

D.2. Potential Limitations
Despite its advantages, LiMA has certain limitations that
should be considered for future research:
Sensitivity to Sensor Calibration. The framework as-
sumes well-calibrated LiDAR and camera sensors for effec-
tive cross-modal feature alignment. Misalignment in real-
world deployments may lead to suboptimal feature fusion.
Future work could explore self-calibration mechanisms or
uncertainty-aware fusion techniques.
Dependence on Temporal Consistency. LiMA relies on
long-term temporal information, which may not be optimal
in scenarios where past observations are unreliable due to
sensor noise, occlusions, or drastic environmental changes.
Investigating adaptive temporal modeling techniques could
further enhance robustness.
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Table B. The per-class IoU scores of state-of-the-art pretraining methods pretrained and linear-probed on the nuScenes [3, 5] dataset. All
scores are given in percentage (%). The Best and 2nd Best scores under each group are highlighted in Green and Red.
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Random 8.1 0.5 0.0 0.0 3.9 0.0 0.0 0.0 6.4 0.0 3.9 59.6 0.0 0.1 16.2 30.6 12.0

Distill: None
PointContrast [25] 21.9 - - - - - - - - - - - - - - - -

DepthContrast [28] 22.1 - - - - - - - - - - - - - - - -
ALSO [2] - - - - - - - - - - - - - - - - -

BEVContrast [19] - - - - - - - - - - - - - - - - -

Distill: ResNet-50
PPKT [11] 35.9 - - - - - - - - - - - - - - - -
SLidR [18] 39.2 44.2 0.0 30.8 60.2 15.1 22.4 47.2 27.7 16.3 34.3 80.6 21.8 35.2 48.1 71.0 71.9

ST-SLidR [13] 40.5 - - - - - - - - - - - - - - - -
TriCC [15] 38.0 - - - - - - - - - - - - - - - -

Seal [10] 45.0 54.7 5.9 30.6 61.7 18.9 28.8 48.1 31.0 22.1 39.5 83.8 35.4 46.7 56.9 74.7 74.7
CSC [4] 46.0 - - - - - - - - - - - - - - - -

HVDistill [27] 39.5 - - - - - - - - - - - - - - - -

Distill: ViT-S
PPKT [11] 38.6 43.8 0.0 31.2 53.1 15.2 0.0 42.2 16.5 18.3 33.7 79.1 37.2 45.2 52.7 75.6 74.3
SLidR [18] 44.7 45.0 8.2 34.8 58.6 23.4 40.2 43.8 19.0 22.9 40.9 82.7 38.3 47.6 53.9 77.8 77.9

Seal [10] 45.2 48.9 8.4 30.7 68.1 17.5 37.7 57.7 17.9 20.9 40.4 83.8 36.6 44.2 54.5 76.2 79.3
SuperFlow [26] 46.4 49.8 6.8 45.9 63.4 18.5 31.0 60.3 28.1 25.4 47.4 86.2 38.4 47.4 56.7 74.9 77.8

ScaLR [16] 49.7 58.5 3.2 62.4 68.8 20.2 32.3 49.0 31.8 21.7 45.9 90.0 39.5 53.1 62.1 78.0 78.1
LiMA 54.8 61.9 3.5 71.6 73.3 29.3 46.8 53.9 31.8 27.7 55.5 91.9 43.5 59.7 65.8 80.2 80.0

Distill: ViT-B
PPKT [11] 40.0 29.6 0.0 30.7 55.8 6.3 22.4 56.7 18.1 24.3 42.7 82.3 33.2 45.1 53.4 71.3 75.7
SLidR [18] 45.4 46.7 7.8 46.5 58.7 23.9 34.0 47.8 17.1 23.7 41.7 83.4 39.4 47.0 54.6 76.6 77.8

Seal [10] 46.6 49.3 8.2 35.1 70.8 22.1 41.7 57.4 15.2 21.6 42.6 84.5 38.1 46.8 55.4 77.2 79.5
SuperFlow [26] 47.7 45.8 12.4 52.6 67.9 17.2 40.8 59.5 25.4 21.0 47.6 85.8 37.2 48.4 56.6 76.2 78.2

ScaLR [16] 51.9 61.6 3.1 70.2 70.9 25.2 29.5 48.3 32.8 22.3 49.9 90.9 45.3 57.9 64.9 79.2 78.3
LiMA 56.7 63.4 4.1 73.7 76.4 32.8 43.4 54.6 38.8 24.3 57.2 92.9 51.3 63.8 68.4 81.0 80.5

Distill: ViT-L
PPKT [11] 41.6 30.5 0.0 32.0 57.3 8.7 24.0 58.1 19.5 24.9 44.1 83.1 34.5 45.9 55.4 72.5 76.4
SLidR [18] 45.7 46.9 6.9 44.9 60.8 22.7 40.6 44.7 17.4 23.0 40.4 83.6 39.9 47.8 55.2 78.1 78.3

Seal [10] 46.8 53.1 6.9 35.0 65.0 22.0 46.1 59.2 16.2 23.0 41.8 84.7 35.8 46.6 55.5 78.4 79.8
SuperFlow [26] 48.0 52.3 12.7 46.5 64.7 21.4 44.9 56.2 26.7 19.9 43.2 84.2 38.1 47.4 56.9 76.0 79.2

ScaLR [16] 51.8 61.2 3.4 65.4 72.4 25.6 34.3 51.7 28.8 23.6 50.4 90.6 44.1 55.6 64.5 79.3 79.5
LiMA 56.7 63.6 3.5 72.4 75.0 33.7 48.5 55.7 37.4 25.3 59.0 92.6 48.3 62.0 68.1 81.1 80.6
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Table C. The per-class IoU scores of state-of-the-art pretraining methods pretrained and fine-tuned on nuScenes [3, 5] dataset with 1%
annotations. All scores are given in percentage (%). The Best and 2nd Best scores under each group are highlighted in Green and Red.
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Random 30.3 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3

Distill: None
PointContrast [25] 32.5 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6

DepthContrast [28] 31.7 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0
ALSO [2] 37.7 - - - - - - - - - - - - - - - -

BEVContrast [19] 37.9 0.0 1.3 32.6 74.3 1.1 0.9 41.3 8.1 24.1 40.9 89.8 36.2 44.0 52.1 79.9 79.7

Distill: ResNet-50
PPKT [11] 37.8 0.0 2.2 20.7 75.4 1.2 13.2 45.6 8.5 17.5 38.4 92.5 19.2 52.3 56.8 80.1 80.9
SLidR [18] 38.8 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3

ST-SLidR [13] 40.8 - - - - - - - - - - - - - - - -
TriCC [15] 41.2 - - - - - - - - - - - - - - - -

Seal [10] 45.8 0.0 9.4 32.6 77.5 10.4 28.0 53.0 25.0 30.9 49.7 94.0 33.7 60.1 59.6 83.9 83.4
CSC [4] 47.0 0.0 0.0 58.7 74.0 0.1 40.9 58.9 31.8 23.7 45.1 92.5 33.0 56.4 62.4 81.6 84.2

HVDistill [27] 42.7 - - - - - - - - - - - - - - - -

Distill: ViT-S
PPKT [11] 40.6 0.0 0.0 25.2 73.5 9.1 6.9 51.4 8.6 11.3 31.1 93.2 41.7 58.3 64.0 82.0 82.6
SLidR [18] 41.2 0.0 0.0 26.6 72.0 12.4 15.8 51.4 22.9 11.7 35.3 92.9 36.3 58.7 63.6 81.2 82.3

Seal [10] 44.3 20.0 0.0 19.4 74.7 10.6 45.7 60.3 29.2 17.4 38.1 93.2 26.0 58.8 64.5 81.9 81.9
SuperFlow [26] 47.8 38.2 1.8 25.8 79.0 15.3 43.6 60.3 0.0 28.4 55.4 93.7 28.8 59.1 59.9 83.5 83.1

ScaLR [16] 45.9 35.8 6.0 57.0 72.7 0.6 42.7 47.5 3.7 8.4 55.3 92.7 28.3 56.3 62.7 83.3 81.3
LiMA 48.8 42.2 0.8 66.0 74.4 0.0 47.3 54.2 0.0 14.8 59.2 93.8 42.6 58.6 62.0 83.0 81.1

Distill: ViT-B
PPKT [11] 40.9 0.0 0.0 24.5 73.5 12.2 7.0 51.0 13.5 15.4 36.3 93.1 40.4 59.2 63.5 81.7 82.2
SLidR [18] 41.6 0.0 0.0 26.7 73.4 10.3 16.9 51.3 23.3 12.7 38.1 93.0 37.7 58.8 63.4 81.6 82.7

Seal [10] 46.0 43.0 0.0 26.7 81.3 9.9 41.3 56.2 0.0 21.7 51.6 93.6 42.3 62.8 64.7 82.6 82.7
SuperFlow [26] 48.1 39.1 0.9 30.0 80.7 10.3 47.1 59.5 5.1 27.6 55.4 93.7 29.1 61.1 63.5 82.7 83.6

ScaLR [16] 48.9 52.8 4.1 66.6 71.7 0.2 44.0 46.5 11.1 5.8 56.1 93.8 35.8 61.7 66.8 83.7 81.8
LiMA 51.3 53.2 3.6 69.0 78.1 11.0 47.1 52.4 7.5 4.9 62.2 94.0 40.5 60.3 66.0 85.1 82.6

Distill: ViT-L
PPKT [11] 42.1 0.0 0.0 24.4 78.8 15.1 9.2 54.2 14.3 12.9 39.1 92.9 37.8 59.8 64.9 82.3 83.6
SLidR [18] 42.8 0.0 0.0 23.9 78.8 15.2 20.9 55.0 28.0 17.4 41.4 92.2 41.2 58.0 64.0 81.8 82.7

Seal [10] 46.3 41.8 0.0 23.8 81.4 17.7 46.3 58.6 0.0 23.4 54.7 93.8 41.4 62.5 65.0 83.8 83.8
SuperFlow [26] 50.0 44.5 0.9 22.4 80.8 17.1 50.2 60.9 21.0 25.1 55.1 93.9 35.8 61.5 62.6 83.7 83.7

ScaLR [16] 49.1 46.5 4.9 70.5 77.0 2.5 45.9 47.7 9.1 4.9 55.6 93.8 35.4 59.4 66.2 84.1 82.5
LiMA 53.2 54.0 5.5 71.3 76.7 11.2 59.3 54.2 10.2 9.4 61.0 94.7 43.4 63.4 68.9 84.2 84.1

7



Ground Truth Random

ScaLR (CVPR’24) LiMA (Ours)

Ground Truth Random

ScaLR (CVPR’24) LiMA (Ours)

Figure A. Qualitative assessments of state-of-the-art methods, pretrained on nuScenes [3] and fine-tuned on nuScenes [5] with 1% anno-
tations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.
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Ground Truth Random
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Ground Truth Random

ScaLR (CVPR’24) LiMA (Ours)

Figure B. Qualitative assessments of state-of-the-art methods, pretrained on nuScenes [3] and fine-tuned on SemanticKITTI [1] with 1%
annotations. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.
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Ground Truth Random
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Figure C. Qualitative assessments of state-of-the-art methods, pretrained on nuScenes [3] and fine-tuned on Waymo [21] with 1% annota-
tions. The error maps depict correct and incorrect predictions in gray and red, respectively. Best viewed in colors.
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ScaLR (CVPR’24) LiMA (Ours)

Figure D. Qualitative assessments of object detection, pretrained on nuScenes [3] and fine-tuned on nuScenes [3] with 5% annotations.
The groundtruth / predicted results are highlighted with blue / red boxes, respectively. Best viewed in colors.
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Figure E. Cosine similarity between a query point (marked as the red dot) and: (1) image features, and (2) LiDAR point features projected
onto the image. Colors range from red (indicating high similarity) to blue (indicating low similarity). Best viewed in colors.
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E. Public Resources Used
In this section, we acknowledge the use of the following
public resources, during the course of this work.

E.1. Public Codebase Used
We acknowledge the use of the following public codebase,
during the course of this work:
• MMEngine1 . . . . . . . . . . . . . . . . . . . . . .Apache License 2.0
• MMCV2 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MMDetection3 . . . . . . . . . . . . . . . . . . . Apache License 2.0
• MMDetection3D4 . . . . . . . . . . . . . . . . Apache License 2.0
• OpenPCSeg5 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

E.2. Public Datasets Used
We acknowledge the use of the following public datasets,
during the course of this work:
• nuScenes6 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI7 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• Waymo Open8 . . . . . . . . . . . . . . . Waymo Dataset License
• ScribbleKITTI9 . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
• RELLIS-3D10 . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticPOSS11 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticSTF12 . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SynLiDAR13 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• DAPS-3D14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Synth4D15 . . . . . . . . . . . . . . . . . . . . . . . . . .GPL-3.0 License
• Robo3D16 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

E.3. Public Implementations Used
We acknowledge the use of the following implementations,
during the course of this work:
• nuscenes-devkit17 . . . . . . . . . . . . . . . . .Apache License 2.0
• semantic-kitti-api18 . . . . . . . . . . . . . . . . . . . . . MIT License
• waymo-open-dataset19 . . . . . . . . . . . . Apache License 2.0

1https://github.com/open-mmlab/mmengine.
2https://github.com/open-mmlab/mmcv.
3https://github.com/open-mmlab/mmdetection.
4https://github.com/open-mmlab/mmdetection3d.
5https://github.com/PJLab-ADG/OpenPCSeg.
6https://www.nuscenes.org/nuscenes.
7http://semantic-kitti.org.
8https://waymo.com/open.
9https://github.com/ouenal/scribblekitti.

10https://github.com/unmannedlab/RELLIS-3D.
11http://www.poss.pku.edu.cn/semanticposs.html.
12https://github.com/xiaoaoran/SemanticSTF.
13https://github.com/xiaoaoran/SynLiDAR.
14https://github.com/subake/DAPS3D.
15https : / / github . com / saltoricristiano / gipso -

sfouda.
16https://github.com/ldkong1205/Robo3D.
17https://github.com/nutonomy/nuscenes-devkit.
18https://github.com/PRBonn/semantic-kitti-api.
19https://github.com/waymo-research/waymo-open-

dataset.

• semantic-poss-api20 . . . . . . . . . . . . . . . . . . . . . MIT License
• SLidR21 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• DINOv222 . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• Segment-Any-Point-Cloud23 . . . . . . . CC BY-NC-SA 4.0
• torchsparse24 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• ScaLR25 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SuperFlow26 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• FRNet27 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

20https://github.com/Theia-4869/semantic-poss-
api.

21https://github.com/valeoai/SLidR.
22https://github.com/facebookresearch/dinov2.
23https://github.com/youquanl/Segment-Any-Point-

Cloud.
24https://github.com/mit-han-lab/torchsparse.
25https://github.com/valeoai/ScaLR.
26https://github.com/Xiangxu-0103/SuperFlow
27https://github.com/Xiangxu-0103/FRNet

13

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection3d
https://github.com/PJLab-ADG/OpenPCSeg
https://www.nuscenes.org/nuscenes
http://semantic-kitti.org
https://waymo.com/open
https://github.com/ouenal/scribblekitti
https://github.com/unmannedlab/RELLIS-3D
http://www.poss.pku.edu.cn/semanticposs.html
https://github.com/xiaoaoran/SemanticSTF
https://github.com/xiaoaoran/SynLiDAR
https://github.com/subake/DAPS3D
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/saltoricristiano/gipso-sfouda
https://github.com/ldkong1205/Robo3D
https://github.com/nutonomy/nuscenes-devkit
https://github.com/PRBonn/semantic-kitti-api
https://github.com/waymo-research/waymo-open-dataset
https://github.com/waymo-research/waymo-open-dataset
https://github.com/Theia-4869/semantic-poss-api
https://github.com/Theia-4869/semantic-poss-api
https://github.com/valeoai/SLidR
https://github.com/facebookresearch/dinov2
https://github.com/youquanl/Segment-Any-Point-Cloud
https://github.com/youquanl/Segment-Any-Point-Cloud
https://github.com/mit-han-lab/torchsparse
https://github.com/valeoai/ScaLR
https://github.com/Xiangxu-0103/SuperFlow
https://github.com/Xiangxu-0103/FRNet


References
[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-

zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In IEEE/CVF International Conference on
Computer Vision, pages 9297–9307, 2019. 1, 4, 9

[2] Alexandre Boulch, Corentin Sautier, Björn Michele, Gilles
Puy, and Renaud Marlet. Also: Automotive lidar self-
supervision by occupancy estimation. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13455–13465, 2023. 6, 7

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11621–11631, 2020. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

[4] Haoming Chen, Zhizhong Zhang, Yanyun Qu, Ruixin
Zhang, Xin Tan, and Yuan Xie. Building a strong pre-
training baseline for universal 3d large-scale perception.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19925–19935, 2024. 6, 7

[5] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Val-
ada. Panoptic nuscenes: A large-scale benchmark for lidar
panoptic segmentation and tracking. IEEE Robotics and Au-
tomation Letters, 7(2):3795–3802, 2022. 1, 4, 6, 7, 8

[6] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 3354–3361, 2012. 1

[7] Peng Jiang, Philip Osteen, Maggie Wigness, and Srikanth
Saripalli. Rellis-3d dataset: Data, benchmarks and analysis.
In IEEE International Conference on Robotics and Automa-
tion, pages 1110–1116, 2021. 1

[8] Alexey A Klokov, Di Un Pak, Aleksandr Khorin, Dmitry A
Yudin, Leon Kochiev, Vladimir D Luchinskiy, and Vitaly D
Bezuglyj. Daps3d: Domain adaptive projective segmenta-
tion of 3d lidar point clouds. IEEE Access, 11:79341–79356,
2023. 2

[9] Lingdong Kong, Youquan Liu, Xin Li, Runnan Chen, Wen-
wei Zhang, Jiawei Ren, Liang Pan, Kai Chen, and Ziwei
Liu. Robo3d: Towards robust and reliable 3d perception
against corruptions. In IEEE/CVF International Conference
on Computer Vision, pages 19994–20006, 2023. 2, 3

[10] Youquan Liu, Lingdong Kong, Jun Cen, Runnan Chen, Wen-
wei Zhang, Liang Pan, Kai Chen, and Ziwei Liu. Segment
any point cloud sequences by distilling vision foundation
models. In Advances in Neural Information Processing Sys-
tems, pages 37193–37229, 2023. 6, 7

[11] Yueh-Cheng Liu, Yu-Kai Huang, Hung-Yueh Chiang, Hung-
Ting Su, Zhe-Yu Liu, Chin-Tang Chen, Ching-Yu Tseng, and
Winston H Hsu. Learning from 2d: Contrastive pixel-to-
point knowledge transfer for 3d pretraining. arXiv preprint
arXiv:2104.04687, 2021. 4, 6, 7

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[13] Anas Mahmoud, Jordan SK Hu, Tianshu Kuai, Ali Harakeh,
Liam Paull, and Steven L Waslander. Self-supervised image-
to-point distillation via semantically tolerant contrastive loss.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7102–7110, 2023. 6, 7

[14] Yancheng Pan, Biao Gao, Jilin Mei, Sibo Geng, Chengkun
Li, and Huijing Zhao. Semanticposs: A point cloud dataset
with large quantity of dynamic instances. In IEEE Intelligent
Vehicles Symposium, pages 687–693, 2020. 2

[15] Bo Pang, Hongchi Xia, and Cewu Lu. Unsupervised 3d
point cloud representation learning by triangle constrained
contrast for autonomous driving. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5229–
5239, 2023. 6, 7

[16] Gilles Puy, Spyros Gidaris, Alexandre Boulch, Oriane
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