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In this supplementary material, we provide analysis of
shared latent space, neuroscience interpretability, the failure
cases and limitation of our method, detailed information
on the evaluation metrics, the structural components of our
framework, additional qualitative comparisons with existing
methods, qualitative analyses of various framework variants,
analysis of VCM, qualitative evaluations under data-limited
scenarios, and the synthesis of fMRI data for specific sub-
jects.

1. Analysis of Shared Latent Space

Our framework learns a shared latent space that aligns fMRI
and visual features across subjects, enabling generalization
by capturing subject invariant patterns. We present the t-SNE
visualization of subject-specific and cross-subject representa-
tions in Fig. 1, t-SNE visualizations reveal tighter clustering
of cross-subject representations, indicating better alignment
across different subjects.

2. Neuroscience Interpretability

We further investigate the neuroscience interpretability of
our model by analyzing voxel-level gradients derived from
internal representations. As illustrated in Fig. 3, the results
indicate that the Low-level Visual Cortex (LVC) predomi-
nantly supports edge decoding, while the High-level Visual
Cortex (HVC) is more involved in semantic processing. Both
regions contribute to color prediction. These findings sug-
gest that our shared representational space captures and pre-
serves the hierarchical structure of visual processing across
subjects.

3. Failure cases

We present the failure cases of our method in Fig. 2, our
method inherits the limitation of SD, which cannot handle
the complex scenes [9, 22]. Additionally, it also fails when
encountering unnatural colors.
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Figure 1. t-SNE visualizations of representations learned by subject-
specific and cross subject decoding.

4. Limitation

One limitation of our work is that the SBMM is a subject-
dependent component, which needs to be retrained for every
new subject. This is due to the significant inter-subject vari-
ability and limited large-scale datasets, resulting in the re-
quirement of subject-specific components, which is a shared
limitation of current cross-subject studies [12, 15, 19, 21].
Although not our purpose, our method could be misused for
privacy invasion or other unethical purposes. Thus, strict and
responsible data privacy protections must be established.

5. Details of Evaluation Metrics

We use 8 evaluation metrics for the quantitative comparison
from low and high levels. PixCorr measures the pixel-wise
correlation of decoded and GT images, SSIM measures the
structure similarity between two images [20]. AlexNet(2) is
the two-way comparison of image features extracted from
the second layer of AlexNet [7], and AlexNet(5) compares
the features extracted from the fifth layer. The above four
metrics evaluate the low-level similarity of reconstructed
images. The high-level metrics including Inception, CLIP,
EffNet-B, and SwAV. Inception is the two-way compar-
ison of the features extracted from the last pooling layer
of InceptionV3 [16], CLIP compares the cosine similarity
between the features extracted from the CLIP image en-
coder [13]. EffNet-B and SWAYV are distance metrics based



Table 1. Qualitative comparisons with other methods on three datasets.

Method NOD GOD BOLD5000

Acc (%) PCC  SSIM | Acc(%) PCC SSIM | Acc(%) PCC  SSIM
IC-GAN[11] : - _ 2039  0.449 0.545 N - -
MinD-Vis [3] - - . 2664 0532 0527 | 25918 0545 0.524
CMVDM [23] - - - 30.11 0768  0.632 | 27.791 0557 0.535
Ours 3512 0.734 0.745 | 34311 0.794 0.704 | 29.088 0.583 0.553
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Figure 2. Failure cases of our method.
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Figure 3. Voxel-level gradient analysis of visual features across
brain regions.

on EfficientNet-B1 [18] and SwAV-ResNet50 [1], respec-
tively.

6. Structure Details

Our SRM adopts the Querying Transformer [8] architecture,
comprising 12 hidden layers. As illustrated in the middle-
right panel of Fig. 2 in the main paper, the predicted semantic

representation S'is incorporated into the cross-attention lay-
ers of the Querying Transformer.

The VCM consists of 13 layers, each designed for differ-
ent resolutions. Each layer includes three Conv2D layers
with S1LU activation functions between them, and the final
output is activated using a Sigmoid function.

The pseudo-code for the BAI framework is provided in
Alg. 1.

7. Evaluation on More Datasets

We also extend our framework on other mind decod-
ing benchmark, including NOD [4], GOD [5], and
BOLDS5000 [2] datasets. We evaluate our method on three
datasets using the same metrics as CMVDM [23]. As shown
in Tab. I, our method consistently outperforms existing base-
lines across all datasets and metrics.

8. More Qualitative Comparisons with Com-
petitors

Additional qualitative comparisons with competing methods
are presented in Fig. 4. Our method demonstrates higher con-
sistency with the GT stimulus images in terms of semantics,
structure, and color.

9. Qualitative Comparison of Variants

We present a qualitative comparison of various model vari-
ants, including predicted edges and color representations,
in Fig. 5. The variants UM, w/o SBMM, and Ours-SS fail
to predict the reasonable edges and color representations,
whereas our model successfully predicts the rough edges and
color of the image. Directly using the predicted representa-
tions does not yield plausible images, as the second-stage
mind decoding requires accurate representations. Our pro-
posed modules, SRM and VCM, enhance the quality of
the reconstructed image by tolerating rough representations.
Finally, our complete framework produces faithfully recon-
structed results with plausible appearances.

10. Analysis of VCM

As shown in Fig. 5, the predicted edges and color palettes are
dissimilar to the GT edges and colors, why the final recon-
struction be faithful with the GT stimulus? Here we answer
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Figure 4. More qualitative comparison with competitors on mind decoding.

this question by visualizing the output of VCM. The visu- representations are inaccurate, the dissimilar representations
alization of VCM’s output weights o, and .. are shown in can also lead to faithful mind decoding.

Fig. 6 (the brighter indicates a higher value). The predicted

a, and o, control fusion weights to relax the influence of pre-

dicted edge and color conditions to output, though predicted



11. Qualitative Comparison under Different
Data Limitation Scenarios

We present a qualitative comparison under different data
limitation scenarios in Fig. 7. As the number of training
samples increases, the reconstruction quality also improves.
Compared to training from sketches with limited data, our
adapted method reconstructs the image more faithfully.

12. Synthesis fMRI for Specific Subject

Given an unseen stimulus image, our framework mimics the
visual system by synthesizing the corresponding fMRI for a
specific subject: {S, E, C} = V. We then decode the syn-
thesized fMRI voxels into representations: V, = {5, E, C}.
The reconstructed images are shown in Fig. 8, where the
synthesized fMRI faithfully reconstructs the stimulus image.

13. Comparison with MindBridge on Cross Sub-
Ject Mind Decoding

We present a cross-subject comparison with MindBridge and
MindEye?2 in Fig. 9. Our decoded images exhibit greater
consistency with the stimulus image across different subjects.
For instance, both MindBridge and MindEye? fail to decode
the “Broccoli” in the second sample, whereas our method
successfully reconstructs it.
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Algorithm 1: Structure details of BAIL

class BAI:
# Shared Encoder
shared_encoder = Sequential ([
Linear (8192, 1024),
LayerNorm((1024,))
1)

# SBMM in Encoders
encoder_alpha_subj = ModuleDict ({
subj_id: Sequential ([
Linear (1024, 1024)
1) for subj_id in [1, 2, 5, 7]
}

encoder_beta_subj = ModuleDict ({
subj_id: Sequential ([
Linear (1024, 1024)
]) for subj_id in [1, 2, 5, 7]
}

# SBMM in Decoders
decoder_alpha_subj = ModuleDict ({
subj_id: Sequential ([
Linear (1024, 1024)
]) for subj_id in [1, 2, 5, 7]
}

decoder_beta_subj = ModuleDict ({
subj_id: Sequential ([
Linear (1024, 1024)
]) for subj_id in [1, 2, 5, 7]
}

# Shared Decoder

shared_decoder = Sequential ([
Linear (1024, 1024),
LayerNorm((1024,)),
Linear (1024, 8192)

1)

# Edge Prediction from Voxel Features
vox2edge = Sequential ([
FC2Img (ConvTransposeAndResNet ()), # Custom

architecture combining ConvTranspose and

ResNet blocks

Sigmoid ()
1)
# Color Prediction from Voxel Features
vox2color = Sequential ([
FC2Img (ConvTransposeAndResNet ()),
Tanh ()

1)
# Text Prediction from Voxel Features
vox2text = Sequential ([
Linear (1024, 1024),
ResMLP ([MLPBlock (1024) for _ in range(2)]),
Linear (1024, vocab_size) # E.g., 59136
1)

# Voxel Prediction from Edge
edge2vox = Img2FC (ConvAndPoolingBlocks ())

# Voxel Prediction from Color
color2vox = Img2FC (ConvAndPoolingBlocks())

# Voxel Prediction from Semantic
text2vox = Sequential ([
Linear (vocab_size, 1024),
LayerNorm((1024,)),
Linear (1024, 1024)
1)

# Translator MLP from Voxels to Representation
translator2Rep = Sequential ([
ResMLP ( [MLPBlock (1024) for _ in range(4)])

1)

# Translator MLP from Representation to Voxels
translator2Vox = Sequential ([
ResMLP ([MLPBlock (1024) for _ in range(4)])

1)
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Figure 5. Qualitative comparison with various variants.
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Figure 6. Visualization of VCM’s output weights a. and a., they control the fusion weights to relax the influence of predicted edge and
color conditions to output.
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Figure 7. Qualitative comparison under different data limitation scenarios.
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Figure 8. Our framework also supports the synthesis of fMRI for specific subject based on an unseen image, and the synthesized fMRI
voxels can reconstruct the stimulus image faithfully.
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Figure 9. Comparison on Cross-subject Mind decoding.
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