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A. Learned Weights
To highlight the importance and validation of the path an-
gular freedom (PAF), we show the learned α in the main
paper. Here, we provide all the learned weights in Table 6.

Dataset Method α λ κ

MPD
DAA∗-min 100.0 19.9 29.6
DAA∗-max 0.0 52.5 36.2
DAA∗-mix 33.4 66.0 75.3

TMPD
DAA∗-min 100.0 17.2 65.9
DAA∗-max 0.0 32.1 0.1
DAA∗-mix 76.9 48.1 83.8

CSM
DAA∗-min 100.0 47.3 100.0
DAA∗-max 0.0 32.1 0.1
DAA∗-mix 68.7 51.7 76.8

Aug-TMPD

DAA∗ 96.4 63.3 97.8
DAA∗-path 58.7 55.2 56.3
DAA∗-mask 69.6 50.5 77.4
DAA∗-weight 62.2 49.9 70.3

Warcraft
DAA∗-min 100.0 75.4 16.7
DAA∗-max 0.0 78.8 43.9
DAA∗-mix 27.7 80.5 74.4

Pokémon
DAA∗-min 100.0 78.5 22.8
DAA∗-max 0.0 83.4 44.0
DAA∗-mix 32.3 83.2 70.2

SDD-intra
DAA∗-min 100.0 53.5 0.2
DAA∗-max 0.0 73.4 68.4
DAA∗-mix 9.5 77.9 91.4

SDD-inter
DAA∗-min 100.0 29.6 3.0
DAA∗-max 0.0 69.0 57.7
DAA∗-mix 17.4 73.0 84.1

Table 6. Learned weights, scaled by ×100 for high readability. We
set α = 1 for DAA∗-min and α = 0 for DAA∗-max. We report
the mean values where multiple training seeds are applied.

B. Relation of α and Predicted Paths
In Eq. (5), a large α aims to minimize the path angle to of-
ten achieve linear paths, while a small one maximizes it for

smooth paths. The learned α = 0.69 in CSM encourages
small path angles for short paths, such as linear path seg-
ments. For example, in Fig. 2(a), the path consists essen-
tially of 3 main linear segments by DAA∗. This inspection
also explains Fig. 2(b) for the learned α = 0.62 by DAA∗.

Meanwhile, unlike these binary maps in Figs. 2(a)–(b)
where obstacles and accessible areas are provided in the
datasets, video-game maps and SDD have more complex
scenarios and have to learn cost maps in Figs. 2(c)–(f).
These learned costs are often continuous on the edges of ob-
jects such as rocks, lakes, and roundabouts. Thus, smooth
paths can generally be achieved by increasing the path an-
gle. This aligns with the small α, 0.28 and 0.32 on video-
game datasets and particularly 0.1 and 0.17 on SDD where
realistic road scenes require smaller α to obtain smoother
paths considering driving safety.

C. Training Procedure
In addition to the pathfinding of DAA∗ in Alg. 1, we also
detail the training procedure with path loss and the combi-
nation of path loss and PPM loss in Alg. 2.

D. Ethical and Societal Impact
This work aims to automate effective vision-based path
planning through end-to-end learning of path shortening
and smoothing. While our DAA∗ promises significant im-
provements in imitating human and machine demonstra-
tions, it also raises potential ethical and societal concerns
such as auto-driving safety in complex environments, model
robustness under attacks, and energy consumption in model
training. For instance, under certain attacks in a system such
as ADAS, α can be maliciously changed to 1, where pre-
dicted paths are forced to be linear crossing inaccessible ar-
eas say roundabouts or unsafe zigzags causing traffic chaos.

However, according to the trade-off between searching
efficiency and path optimality, the search cost 0.5%–6.4%
is minor. We also reveal the necessity of only binary path

1The discretized activation disables gradient accumulation by (·)detach,
see Line 74 of A∗. This is equivalent to computing the gradients from pk .



Algorithm 2: Training Procedure of Deep Angular A∗

Input: A dataset D = {Ii, si, ti, P̂i, θ̂i} with a map image
Ii containing N pixels, a source node si, a target node ti,
a reference path P̂i, and a reference PPM θ̂i (only required
by PPM loss) for all i ∈ {1, ...,M} given M samples, a
mask threshold T = 0.5, learning rate l, and loss weights
w1 and w2 for path loss and PPM loss, respectively.
Parameter: A cost-map encoder network f(I, s, t), con-
taining weights w and bias b, and term weights {α, λ, κ}.
Note: On Aug-TMPD, we set w1 = w2 = 1 for DAA∗,
w1 = 1 and w2 = 0 for DAA∗-path, w1 = w2 = 1
for DAA∗-mask with a cost-map mask, and w1 = 10 and
w2 = 1 for DAA∗-weight. On the other datasets, we set
w1 = 1 and w2 = 0 since only the path loss is required.
Procedure:

1: Initialize α = 0.5, λ = 0.5, and κ = 1.
2: for i ∈ {1, ...,M} do
3: Compute a cost map θi = f(Ii, si, ti).
4: Compute a confidence list p = {pk} in Eq. (9) for all

k ∈Mc by Step 1, Alg. 1 given inputs {θi, si, ti}.
5: Form a reference path map Ŷi ∈ BN with 1 for all

nodes in P̂i and 0 otherwise.
6: Form a search history map Y ∈ BN with (1 −

pk)detach + pk for all k ∈ Mc using discretized acti-
vation1 and 0 otherwise.

7: Compute path loss Lp
i = ||Y − Ŷi||1.

8: For DAA∗-mask, compute a cost-map mask m =
1[θi ≥ T ], then update θi ← θi ⊙m and θ̂i ←
θ̂i ⊙m using Hadamard product.

9: Compute PPM loss Lc
i = ||θi − (1− θ̂i)||2.

10: Compute a weighted loss Li = w1Lp
i + w2Lc

i .
11: end for
12: Compute the average loss L = 1

M

∑M
i=1 Li.

13: Compute the gradients of learnable parameters, ∇wL,
∇bL, ∇αL,∇λL, and ∇κL, by backpropagting L.

14: Update parameters w ← w − l∇wL, b ← b − l∇bL,
α← α− l∇αL, λ← λ− l∇λL, and κ← κ− l∇κL.

15: Repeat Lines 2-14 till the training loss converges.

labelling for supervised learning with more accessible path
reference rather than PPM reference. We aim to further mit-
igate these issues by developing fair, transferable, robust,
and more efficient algorithms in future work. Our commit-
ment is to ensure that autonomous path planning is socially
responsible and environmentally sustainable.


