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The purpose of this supplementary material is to enhance
the clarity and understanding of our proposed method by
providing comprehensive details, additional experiments,
in-depth analyses, and visualizations.

1. Differences between Our Model and GR-1

Our model differs fundamentally from GR-1 in both net-
work architecture and training paradigm. Particularly, GR-
1 focuses on multi-task generalization via large-scale video
pretraining with an autoregressive GPT-style model. In
contrast, we target spatio-temporal coordination using a
diffusion-based model that jointly predicts future latents
and actions without a pretraining stage. Our method also
constructs the causal relationship between visual outcomes
and action by action-conditioned attention mechanism. Be-
sides, we predict future video latents rather than raw pixels
used in GR-1 and show the advantage of latent prediction.

2. Additional Implementation Details

2.1. Implementation Details

We use DDIM [13] as the noise scheduler with a square
cosine schedule [11], employing 100 diffusion steps dur-
ing training and 10 steps during inference. Our model pre-
dicts the clean sample instead of epsilon. We utilize a pre-
trained Cosmos tokenizer [3] to extract visual tokens for fu-
ture frames, using DV 4×8×8 version with a compression
ratio of 256. For ALOHA benchmark, we train for 20, 000
steps with a batch size of 32, while for RoboTwin bench-
mark, we train for 300 epochs with a batch size of 128. For
real-world experiments, we train for 50 epochs with a batch
size of 32. Across all experiments, we adopt a cosine learn-
ing rate scheduler with 500 linear warm-up steps to stabilize
training.

*Work was done during internship in KAUST.
†Corresponding author: mohamed.elhoseiny@kaust.edu.sa

Model ALOHA RoboTwin Real-World

Image resolution 480×640 240×320 480×640
Backbone Pretrained ResNet18 Pretrained ResNet18 Pretrained ResNet18
# encoder layer 4 4 4
# dncoder layer 7 7 7
Chunk size 100 20 40
# Predicted frames 40 20 40
Scheduler DDIM DDIM DDIM
Prediction type Sample Sample Sample
Diffusion steps 100 100 100
Diffusion steps (eval) 10 10 10
Noise scheduler Squared cosine Squared cosine Squared cosine
Tokenizer Cosmos DV 4×8×8 Cosmos DV 4×8×8 Cosmos DV 4×8×8
Patch size 5 5 5

Training ALOHA RoboTwin Real-world

Epochs 50 300 50
Batch size 32 256 32
Train/Validation ratio 4:1 9:1 49:1
Learning rate 5e-4 1e-4 5e-5
Lr scheduler Cosine warmup Cosine warmup Cosine warmup
Optimizer AdamW AdamW AdamW
Prediction weight 0.2 0.2 0.2
Image augmentation RandomShift(15,20) RandomShift(6,8) RandomShift(15,20)

Table 1. Hyperparameters of our method.

2.2. Structure Details

We provide our architecture and hyperparameter setting de-
tails in three evaluate environments, as shown in Table 1.
For normalization, we independently scale the minimum
and maximum values of each action dimension and each
video token dimension to the range [−1, 1]. Normalizing
actions and tokens to [−1, 1] is essential for DDPM and
DDIM predictions, as these models clip their outputs to
[−1, 1] to ensure stability [6].

2.3. Baseline Implementations

To ensure fair comparison, we report baseline results on
both the ALOHA and RoboTwin benchmarks based on ei-
ther official publications or our own reproductions. For the
ALOHA benchmark, we report ACT results directly from
the original paper [16], and reproduce Diffusion Policy [2]
using its publicly available code and default training set-
tings. For the RoboTwin benchmark, we report the results
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ALOHA RoboTwin Real-World

Chunk size 100 20 40
Batchsize 8 256 16
Learning rate 1e-5 1e-4 2e-5
Lr scheduler Constant Cosine warmup Constant
Optimizer AdamW AdamW AdamW

Table 2. Hyperparameters of ACT.

ALOHA RoboTwin Real-World

Chunk size 100 8 40
N obs step 2 3 2
Batchsize 20 128 20
Learning rate 1e-4 1e-4 1e-4
Lr scheduler Cosine warmup Cosine warmup Cosine warmup
Optimizer AdamW AdamW AdamW

Table 3. Hyperparameters of Diffusion Policy.

of Diffusion Policy [2] and 3D Diffusion Policy [14] from
the RoboTwin paper [10]. For other baselines, including
ACT [16], GR-MG [8], and RDT-1B [9], we retrain them
using their official implementations and configurations, and
evaluate them under the same data and testing protocols as
our method. The hyperparameters for ACT and Diffusion
Policy are summarized in Table 2 and Table 3, respectively.

2.4. Cosmos Tokenizer
Cosmos Tokenizer is a core component of the Cosmos
World Foundation Model Platform [3], designed to effi-
ciently transform raw visual data (images and videos) into
compact token representations. It supports both continuous
and discrete tokenization, preserving spatio-temporal infor-
mation while reducing computational costs. Designed with
a causal architecture, it ensures that token computation de-
pends only on past and current frames, making it well-suited
for real-time and sequential tasks.

For an input video of shape (1 + T,C,H,W ),
Cosmos Tokenizer compresses it based on the spatial
compression factor sHW and the temporal compres-
sion factor sT , producing an output of shape (1 +
T/sT , C,H/sHW ,W/sHW ). The first temporal token rep-
resents the first input frame, while subsequent tokens cap-
ture temporal dependencies. Spatially, the feature map is
downsampled by a factor of sHW , resulting in a reduced
resolution of (H/sHW ,W/sHW ).

Fig. 1 illustrates video reconstruction of the pretrained
Cosmos Tokenizer on two simulated benchmarks. Since
the Cosmos tokenizer is trained in various domains such
as robotics, driving, egocentric, and web videos, it demon-
strates strong generalization capabilities. This makes it a
suitable choice as a plug-and-play module for compressing
video while retaining information-rich features.

Figure 1. Visualization of video reconstruction using Cosmos
Tokenizer on ALOHA [16] and RoboTwin [10] benchmark (17
frame sub-clip, DV4x8x8 version).

Method Avg. SR ↑ Transfer Cube (Human) Insertion (Human)

InterACT [7] 63.0 82 44
ARP [15] 59.4 94 24.8

Ours 65.3 84 46.7

Table 4. Comparison with more transformer-based methods.

3. Additional Experimental Results
3.1. Comparison with Transformer-Based Baselines
We compare our method against more transformer-based
baselines, including InterACT [7] and ARP [15], as shown
in Table 4. For a fair comparison, we report the original re-
sults of InterACT and ARP from their respective papers and
retrain our model under the same experimental settings. All
results are averaged over 3 random seeds with 50 evaluation
episodes each. Our method achieves the highest average
success rate (Avg. SR) of 65.3, consistently outperforming
both InterACT and ARP.

3.2. Results in Multi-task setting
To evaluate the effectiveness of our method in more com-
plex multi-task scenarios, we extend our single-task frame-
work to a language-conditioned multi-task policy, inspired
by prior work [1]. Specifically, we incorporate FiLM-based
conditioning [12] to inject task descriptions into the pol-
icy. We construct a multi-task benchmark using three repre-
sentative bimanual tasks from RoboTwin and compare our
method against RDT-1B [9]. As shown in Table Tab. 6,
our approach consistently outperforms RDT-1B, highlight-
ing its strong ability in complex dual-arm manipulation.

3.3. Detailed Result on Data Efficiency Setting
We evaluate methods under the data efficiency setting,
shown in Table 5. The performance of all methods de-



Avg. Block Block Blocks Blocks Bottle Container Diverse Dual Bottles
Method Success ↑ Hammer Beat Handover Stack (Easy) Stack (Hard) Adjust Place Bottles Pick Pick (Easy)

3D Diffusion Policy [14] 30.4 55.7 89 - - 64.7 52.7 11.3 40.3
Diffusion Policy [2] 1.5 0.0 0.0 0.0 0.0 6.3 1.7 0.7 1.7

ACT [16] 15.4 45.3 65.67 3.67 0.0 38.33 9.67 0.7 27.7
Ours 27.3 60.33 88.33 4.33 0.33 38.33 40.33 1.33 32.33

Dual Bottles Dual Shoes Empty Cup Mug Hanging Mug Hanging Pick Apple Put Apple Shoe Coord.
Method Pick (Hard) Place Place (Easy) (Hard) Messy Cabinet Place Avg. ↑

3D Diffusion Policy [14] 31.7 4.0 33.7 7.3 4 4 50.0 38 25.1
Diffusion Policy [2] 8.0 0.0 0.0 0.0 12.0 5.3 0.0 0.0 0.0

ACT [16] 17.0 2.7 3.0 0.0 0.0 7.0 14.33 12 13.9
Ours 34.33 3.67 16.67 0.67 1.0 8.67 76.0 29.33 28.4

Table 5. Evaluation on data efficiency setting. We report the mean of success rates averaged over 3 random seeds. Best score in bold,
second-best underlined. Coord. Avg. denotes the averaged success rate of tasks in the coordinated subset.

Avg. ↑ Diverse Blocks Put Apple
Method Success (%) ↑ Bottle Pick Stack (Easy) Cabinet

RDT-1B [9] 54.0 14 66 82
Ours 62.0 (+8.0) 24 62 100

Table 6. Performance comparison under multi-task setting. We
extend our methods to a multi-task policy and beats RDT-1B [9].

grades compared to the default setting due to the limited
training data. Among the baselines, 3D Diffusion Policy
achieves the highest overall success rate, benefiting from
its 3D point cloud representation, which has been shown to
exhibit strong sample efficiency. Our method achieves the
best result among all 2D policy models. In Seq-coordinate
tasks, our method even outperforms 3D DP, demonstrating
its effectiveness in capturing sequential dependencies on the
data efficiency setting.

3.4. Visualization of Video Prediction
We visualize predicted frames in Fig. 2. While not pho-
torealistic, our method generates semantically meaningful
predictions (e.g., drawer opening) that reflect task-relevant
dynamics. We respectfully clarify that our model is not de-
signed to generate photorealistic frames, but rather to cap-
ture key task dynamics (e.g., drawer opening) for robotic
action prediction. As prior work has shown that accurate
modeling of task-relevant latent dynamics is more impor-
tant than pixel-level reconstruction for effective control, e.g.
TD-MPC2 [4], MPI [5]. We do not explicitly optimize for
video quality, as our objective is not visual fidelity but task-
relevant dynamics

3.5. Impact of Video Token Type
We also study the impact of various video tokens from
Cosmos-Tokenizer[3]. As shown in Tab. 7, two different
video tokens, discrete tokens and continuous tokens are im-
plemented based on our model and the best results are re-
ported for both tokens with same training seed. Our empir-

Figure 2. Visualization of video prediction results.

ical analysis demonstrates that discrete tokens outperform
continuous tokens in action prediction. Notably, this finding
contrasts with results from video prediction studies, indicat-
ing that the underlying factors merit further investigation in
future research.

Video Avg. Transfer Cube Insertion
Token Success ↑ Scripted Human Scripted Human

DV 73.7 98 78 79 40
CV 70.7 95 77 86 25

Table 7. Ablation of video token. DV denotes discrete video
token and CV denotes continuous video token.

4. Additional Task Details

4.1. Task Description
For details of tasks in the ALOHA [16] and RoboTwin [10]
simulation benchmarks, please refer to their original pa-
pers. Table 8 provides a comprehensive overview of the
real-world benchmark robot tasks, illustrated in Fig. 3.

4.2. Task Category
We categorize the bimanual tasks in RoboTiwn benchmark
into three types:

• Dominant-select – The executing arm is chosen based on
the object’s position. Tasks include:



Task #Steps Task Description

Water Wipe 500 Lift a bottle and wipe the ex-
posed area with a cloth.

Coffee Stir 350 Pick up a cup and a pen, then
stir inside the cup.

Cup Stack 400 Grasp both cups, place the right
one first, then stack the left.

Can Handover 450 The left arm hands a can to the
right arm, which places it.

Table 8. Real-World task descriptions

– Block Hammer Beat, Empty Cup Place, Pick Apple
Messy, Shoe Place, Bottles Ajust, Container Place

• Sync-bimanual – Both arms operate independently but
simultaneously. Tasks include:
– Diverse Bottle Pick, Dual Bottles Pick (Easy), Dual

Bottles Pick (Hard), Dual Shoes Place
• Seq-coordinate – Tasks require sequential coordination

with temporal dependencies. Tasks include:
– Block Handover, Blocks Stack (Easy), Blocks Stack

(Hard), Mug Hanging (Easy), Mug Hanging (Hard),
Put Apple Cabinet
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Figure 3. Task definition of real-world experiments.
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