Fast Image Super-Resolution via Consistency Rectified Flow
Supplementary Material

In this supplementary material, we first provide addi-
tional details about our FlowSR in Sec. |. Next, we present
more experimental results in Sec. 2. Finally, we discuss the
limitations of our approach and outline potential future di-
rections in Sec. 3.

1. Implementation Details

We first fine-tune the pre-trained SD model [6] to adapt it
to our SR flow learning objectives. The fine-tuned SR flow
model is then used to initialize both the SR model 6 and
the teacher model ¢. A default text prompt is used for the
SD model. During consistency SR flow training, each train-
ing batch is split into two groups: one for SR flow learning
and the other for consistency learning. This approach en-
sures that the fine-tuned SR model still learns accurate SR
flow while also acquiring distilled one-step high-quality in-
ference capability.

For the fast-slow time scheduling, the adjacent time steps
tand ¢’ = t+ At are sampled as follows: we first randomly
select either the fast scheduler or the slow scheduler and use
it to sample ¢’. Then, the other scheduler is used to sample
t. If the fast scheduler is chosen first, ¢ is sampled from the
range between t’ and its predecessor timestep. Conversely,
if the slow scheduler is chosen first, ¢ is sampled from the
next time point less than ¢'. This approach ensures that the
jump At remains flexible.

We also observe that the choice of timestep shifting and
sampling plays a crucial role in SR flow learning, and we
provide an ablation study in Sec. 2.4 to further analyze this.

For the image quality alignment loss, we employ
Qwen2-VL [9] to generate image quality captions. Alter-
natively, other MLLMs or fixed quality description prompts
can also be used to compute this loss.

2. More Results

2.1. Evaluation on DIV2K-Val

We also evaluate our method on the DIV2K-Val dataset
[1, 8]. Table 1 provides a quantitative comparison of var-
ious SR methods. Across all reference-based metrics, our
FlowSR achieves state-of-the-art performance or performs
on par with the best existing methods. For no-reference
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Figure 1. Impact of timestep shifting / timestep sampling. SD3
timestep shifting with lognorm (-2.0, 2.0) timestep sam-
pling achieves a good fidelity/quality tradeoftf on DRealSR [11].

metrics, while FlowSR performs worse than the multi-
step SD-based PASD [14], it remains the best-performing
model among all single-step sampling methods. These re-
sults demonstrate the effectiveness and superiority of our
method.

2.2. Model efficiency

We present the model parameters, MACs, and latency in
Table 2. The MACs and runtime are measured for 4x
SR using a 128128 LR input. Note that we use a fixed
text prompt for model inference, eliminating the need for
text encoding in the SD model. As demonstrated, our
method shows a significant advantage over multi-step SR
approaches, such as StableSR and SeeSR, while main-
taining comparable computational complexity to one-step
methods like OSEDiff.

2.3. More Qualitative Visual Comparisons

Figs. 2 to 4 provide additional visual comparisons between
FlowSR and other DM-based SR methods. Our visual re-
sults are consistently better than, or at least comparable to,
all multi-step and single-step diffusion methods across var-
ious scenarios, such as flowers, buildings, and clothing. Vi-
sual comparisons also support the conclusions drawn from
the quantitative study, highlighting the higher fidelity of
our results. Overall, FlowSR exhibits more natural details,
along with realistic textures and structures.



Table 1. Quantitative comparisons of different methods on the DIV2K-Val dataset.

Methods ~ #Steps PSNR1 SSIM{ LPIPS| DISTS| FID| NIQE| MUSIQ1 MANIQA 1 CLIPIQA 1
StableSR [S] 200 2326 05726 03113 02048 2444 476 65.92 0.6192 0.6771
DiffBIR [S] 50 2364 05647 03524 02128 3072 4.70 65.81 0.6210 0.6704
SeeSR[13] 50 2368  0.6043 03194  0.1968 2590 481 68.67 0.6240 0.6936

PASD [14] 20 2314 05505 03571 02207 2920  4.36 68.95 0.6483 0.6788

ResShift [15] 15 2465 06181 03349 02213 3611 682 61.09 0.5454 0.6071
SinSR [10] 1 2441 06018 03240 02066 3557  6.02 62.82 0.5386 0.6471

OSEDiff[12] 1 2372 06108 02941 01976 2632 471 67.97 0.6148 0.6683
DoSSR [2] 1 2435  0.6265 03725 02786 5027  10.38 58.44 0.5024 0.6187

FlowSR 1 2442 06192 02798  0.1847 2452 463 68.22 0.6193 0.6901

Table 2. Efficiency metrics of parameters, MACs, and runtime.

Method StableSR ~ DiffBIR  SeeSR  PASD  ResShift SinSR  OSEDiff DoSSR FlowSR

#steps | 200 50 50 20 15 1 1 1 1
#param (M) | 1409 1683 2511 2314 174 174 1765 1718 982
MAC:s (G) | 95382 24234 66444 23592 4962 2119 2323 3232 2148

time (s) | 13.54 6.51 5.21 3.47 0.89 0.13 0.16 0.28 0.14

2.4. Impact of timestep shifting and sampling

We train the basic SR flow models using different time
scheduling methods to evaluate their impact. We se-
lect representative timestep shifting options, including SD3
[3], which biases timesteps toward ¢ = 1, and FLUX.1-
schnell', which uses uniform timesteps. For timestep
sampling, we use lognorm (0.0, 1.0) as adopted in
[3], lognorm (-2.0, 2.0) studied in [7], and uniform
sampling. The first sampling method favors intermediate
timesteps, while the second samples more timesteps closer
to t = 1. The results for different inference steps are
shown in Fig. 1. We observe that: (1) SD3 timesteps
outperform the uniform timesteps for SR flow in most
cases; (2) lognorm (0.0, 1.0) achieves high quality
(MUSIQ) but sacrifices fidelity (SSIM). In our experiments,
we employ SD3 timesteps with lognorm (-2.0, 2.0)
timestep sampling, as it demonstrates high fidelity with one-
step inference and good quality with few-step inference.

3. Limitations and Future Works

In this work, we tackle one-step SR from the perspective
of flow and consistency. We provide valuable insights into
the effective use of flow-based techniques and consistency
learning to achieve competitive SR results in a single-step
setting. While our study demonstrates promising results,
there are some limitations. First, due to computational con-
straints, we have not yet explored more advanced T2 mod-
els, such as SD3 [3] and FLUX [4], as potential backbones.
Second, we are actively working on further reducing the
number of parameters in the backbone network to achieve
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additional efficiency gains.

References

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In
CVPRW, 2017. 1

Qinpeng Cui, Yixuan Liu, Xinyi Zhang, Qiqi Bao, Zhong-
dao Wang, Qingmin Liao, Li Wang, Tian Lu, and Emad
Barsoum. Taming diffusion prior for image super-resolution
with domain shift sdes. NeurIPS, 2024. 2

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Miiller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling recti-
fied flow transformers for high-resolution image synthesis.
In ICML, 2024. 2

Black Forest Labs. Flux. https://github.com/
black-forest-labs/flux, 2024. 2

Xingi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai,
Fanghua Yu, Yu Qiao, Wanli Ouyang, and Chao Dong. Dift-
bir: Toward blind image restoration with generative diffusion
prior. In ECCV, 2024. 2

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. |

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas
Blattmann, Patrick Esser, and Robin Rombach. Fast high-
resolution image synthesis with latent adversarial diffusion
distillation. In SIGGRAPH Asia, 2024. 2

Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK
Chan, and Chen Change Loy. Exploiting diffusion prior for
real-world image super-resolution. IJCV, 2024. 1,2

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, et al. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint
arXiv:2409.12191,2024. 1

Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang,
Langing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao, Alex C
Kot, and Bihan Wen. Sinsr: diffusion-based image super-
resolution in a single step. In CVPR, 2024. 2

Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qix-
iang Ye, Wangmeng Zuo, and Liang Lin. Component


https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

[12]

[13]

(14]

[15]

divide-and-conquer for real-world image super-resolution. In
ECCV,2020. 1

Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang.
One-step effective diffusion network for real-world image
super-resolution. NeurlIPS, 2024. 2

Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang,
Shuai Li, and Lei Zhang. Seesr: Towards semantics-aware
real-world image super-resolution. In CVPR, 2024. 2

Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and
Lei Zhang. Pixel-aware stable diffusion for realistic im-
age super-resolution and personalized stylization. In ECCV,
2024. 1,2

Zongsheng Yue, Jianyi Wang, and Chen Change Loy.
Resshift:  Efficient diffusion model for image super-
resolution by residual shifting. NeurIPS, 2023. 2



FlowSR (1)

StableSR (200) DiffBIR (50) SeeSR (50) PASD (20)

OSEDiff (1) DoSSR (1)

FlowSR (1)
-
e .

PASD (20)
SN TR
A\

ResShift (15) DoSSR (1)

-
LR Image FlowSR (1)

Figure 2. Visual comparisons of different SR methods on real-world examples #1. The number of sampling steps are indicated in bracket.
Please zoom in for a better view.
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Figure 3. Visual comparisons of different SR methods on real-world examples #2. The number of sampling steps are indicated in bracket.
Please zoom in for a better view.
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Figure 4. Visual comparisons of different SR methods on real-world examples #3. The number of sampling steps are indicated in bracket.
Please zoom in for a better view.
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