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Domain Adaptation for Image-to-Image Translation Diffusion Models

Supplementary Material

1. Details of our methods001

Algorithm 1 Source-Available Domain Adaptation For Dif-
fusion Model with Domain Noise Alignment

Require: Source domain Dt, diffusion model ϵθ(xt, t, c),
Timestep ti

Ensure: Output list nall

1: for each ct ∈ Dt do
2: sample xT ∈ N(0, 1), nt = ()
3: for each t = T to 0 step ti do
4: ϵt = ϵθ(xt, c, ct), nt.append(∥ϵt∥2)
5: xt−1 = scheduler.step(ϵt, t, xt).prev sample
6: end for
7: nall.append(nt)
8: end for
9: nall = nall.mean(dim = 0)

10: return nall

Require: Target image cs, diffusion model ϵθ(xt, t, c),
Source domain noise list nall, Timestep ti

Ensure: Output result x0

Initialize δ0 = 0, δ1 = 0, λ = 1, xT ∈ N(0, 1)
2: for each t = T to 1 step ti do

ϵt = ϵθ(xt, c, cs), δ1 = ∥ϵt∥2/nall[(T − t)/ti]
4: if δ0 ̸= 0 then

λ = δ1 − δ0 + 1− sumλ

6: end if
sumλ = sumλ + λ− 1, δ0 = δ1

8: x̂0 = (xt −
√

β̄tϵt/λ)/
√
ᾱt

xt−1 =
√
ᾱt−1x̂0 + (1−√

ᾱt−1)ϵt
10: end for

return x0

1.1. For Source-Available DA Setting002

We show our Domain Noise Alignment for Source-003
Available DA in Algorithm 1. Specifically, we pre-calculate004
the variance of noise predictions from the source domain.005
Then, we align the noise predictions from the target do-006
main with those pre-calculated. Instead of directly scal-007
ing the noise prediction, we utilize the method for solv-008

ing λt for each timestep: ∆N(t) − 1 ≈
∫ T

t
(λT − 1)dt +009 ∫ T−1

t
(λT−1 − 1)dt + ... +

∫ t+1

t
(λt+1 − 1)dt, where010

∆N(t) = ∥ϵθ(xt, t, cs)∥2/∥ϵθ(xt, t, ct)∥2. We can ap-011
proximate λt by leveraging the error between two adjacent012
timesteps, as described in Sec. 4.2 in the main text.013

Algorithm 2 Source-Free Domain Adaptation For Diffu-
sion Model with Domain Noise Alignment

Require: Target image cs, diffusion model ϵθ(xt, t, c),
Timestep ti, Linear mask schedule P , Sample times k

Ensure: Output result x0

1: Initialize δ0 = 0, δ1 = 0, λ = 1
2: sample xT1 , . . . , xTk

∈ N(0, 1),
3: for each t = T to 1 step ti do
4: for each i = 1 to k do
5: ϵti = ϵθ(xti , c, cs)

6: x̂0i = (xt −
√

β̄tϵti/λ)/
√
ᾱt

7: end for
8: γ = cal consistency(ϵt1 , . . . , ϵtk)
9: pt = P [T/ti]

10: M = quantile(stack[x̂01 , . . . , x̂0k ].var(0), pt)
11: δ1 = ∥ϵt∥2/∥ϵt[M ]∥2
12: if δ0 ̸= 0 then
13: λ = (δ1 − δ0 + 1− sumλ)γ
14: end if
15: sumλ = sumλ + λ− 1
16: δ0 = δ1
17: for each i = 1 to k do
18: x̂0i = (xti −

√
β̄tϵti/λ)/

√
ᾱt

19: xt−1i =
√
ᾱt−1x̂0i + (1−√

ᾱt−1)ϵti
20: end for
21: end for
22: return ensemble(x01 , . . . , x0k)

1.2. For Source-Free DA Setting 014

We show our Domain Noise Alignment and a noise es- 015
timation mechanism for Source-Free DA in Algorithm 2. 016
Specifically, by performing multiple samplings of the ini- 017
tial noise in a batch, we can generate target images 018
x0 ∈ RB×C×H×W and define high-confidence and low- 019
confidence regions based on their variances along the batch 020
dimension, where B represents the number of initial noise 021
samples. The regions with lower variance are more reliable 022
in prediction compared to other regions. Therefore, we use 023
p as the percentage threshold to obtain regions with higher 024
confidence and approximate the statistical properties of the 025
source domain during the denoising process by leveraging 026
the statistics of these selected regions 027
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Table 1. Comparison results of diffusion models w/ and w/o our methods for Blind SR under different DA settings. The results are the
average performance on four kinds of degradations(bicubic+jpeg, bicubic+noise, bicubic+blur, bicubic+jepg+noise+blur).

Method Set14 BSD100

PSNR↑ LPIPS↑ MUSIQ↑ MANIQA↑ PSNR↑ LPIPS↑ MUSIQ↑ MANIQA↑
Source-Dependent Domain Adaptation

DiffBIR 21.72 0.447 70.09 0.59 22.01 0.451 72.45 0.62
DiffBIR+ours 22.27 0.456 71.42 0.59 22.69 0.459 72.91 0.64
StableSR 21.98 0.455 68.23 0.56 22.27 0.455 70.12 0.58
StableSR+ours 22.43 0.469 68.74 0.57 22.84 0.461 70.43 0.59

Source-Free Domain Adaptation
DiffBIR 21.72 0.447 70.09 0.59 22.01 0.451 72.45 0.62
DiffBIR+ours 22.05 0.452 71.34 0.59 22.38 0.456 72.52 0.63
StableSR 21.98 0.455 68.23 0.56 22.27 0.455 70.12 0.58
StableSR+ours 22.14 0.463 68.42 0.57 22.45 0.458 70.33 0.58

2. More Implementation Details028

2.1. Dataset Details029

Depth Estimation. We mainly test our Method on030
nuScenes and RobotCar Night datasets, both of which con-031
tain images under diverse conditions. nuScenes is a large032
autonomous driving dataset comprising 1000 video clips033
collected in diverse road scenes and weather conditions.034
These scenes are pretty challenging, with a fair amount of035
unexpected regions. RobotCar Night is a large-scale au-036
tonomous driving dataset that includes driving videos cap-037
tured on a consistent route during various weather condi-038
tions, traffic conditions, and times of day and night.039

Moreover, we also test our method on more commonly040
used datasets, like NYUv2 and KITTI. The NYUv2 dataset041
is a high-quality dataset widely used for depth estimation042
and indoor scene understanding, released by New York Uni-043
versity. It contains 1,449 pairs of RGB-D images, cap-044
tured from diverse indoor scenes (such as offices, living045
rooms, kitchens, etc.), with depth information acquired us-046
ing the Microsoft Kinect sensor. The KITTI depth estima-047
tion dataset comprises 93,000 images, which are frames ex-048
tracted from continuous video sequences, encompassing a049
variety of urban scenes and driving conditions. These im-050
ages are paired with their corresponding sparse depth maps051
(generated by LiDAR), providing a rich resource of training052
and testing data for depth estimation tasks.053
Blind Super-Resolution. We mainly test our Method on054
RealSR and DRealSR datasets. RealSR and DRealSR055
are two significant datasets designed for real-world super-056
resolution (SR) tasks, aiming to address the shortcomings057
of traditional super-resolution methods in real-world sce-058
narios. For ease of comparison, we only utilize their valida-059
tion datasets for testing, where RealSR contains 100 paired060
images and DRealSR contains 93 paired images. The low-061
resolution (LR) images have a resolution of 128 × 128,062

while the high-resolution (HR) images have a resolution of 063
512× 512. 064

Moreover, we also test our method on synthetic datasets 065
Set14 and BSD100. Following the setting of previ- 066
ous work, we adopt several synthetic degradations to the 067
HR images in these two datasets, and report the aver- 068
age performance. We choose eight kinds of degradations: 069
bicubic, bicubic+noise, bicubic+blur, bicubic+jpeg, bicu- 070
bic+noise+blur, bicubic+noise+jpeg, bicubic+blur+jpeg, 071
bicubic+noise+blur+jpeg. 072

Optical Flow. We mainly test our Method on FCDN and 073
Sintel datasets. FCDN (FlyingChairs-DarkNoise) is a novel 074
dataset proposed by Zheng, specifically designed to en- 075
hance optical flow estimation in low-light environments. 076
This dataset is built upon the open-source optical flow 077
dataset, FlyingChairs, and is synthesized by incorporating 078
noise characteristics and automatic white balance (AWB) 079
features under low-light conditions. Specifically, the au- 080
thors first estimated the noise characteristics in low-light 081
settings (primarily based on Poisson and Gaussian distribu- 082
tions) and then integrated these noise characteristics into the 083
FlyingChairs dataset, resulting in the creation of the FCDN 084
dataset. The Sintel dataset comprises 35 scenes with a total 085
of 1,628 frames, where each scene contains between 20 to 086
50 frames. The frame rate is 24 fps, and the resolution of 087
the images is 1024× 436. 088

Semantic Segmentation. We mainly test our Method on 089
ACDC and Dark Zurich datasets. ACDC (Adverse Condi- 090
tions Dataset with Correspondences) is a semantic segmen- 091
tation dataset focused on extreme visual scenarios, primar- 092
ily designed for intelligent driving applications. The dataset 093
contains 4,006 images, evenly distributed across four com- 094
mon adverse weather conditions: fog, nighttime, rain, and 095
snow. Each image is accompanied by high-quality pixel- 096
level annotations, as well as corresponding images captured 097
under normal conditions in nearly identical scenes. Addi- 098
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tionally, a binary mask is provided to distinguish between099
clear and uncertain semantic content within the images.100
Dark Zurich is an image dataset designed for semantic seg-101
mentation, focusing on scenes captured during nighttime,102
dusk, and daytime. The dataset comprises a total of 8,779103
images, each accompanied by the camera’s GPS coordi-104
nates. These coordinates are utilized to establish cross-time105
correspondences, matching each nighttime or dusk image106
with its corresponding daytime counterpart.107

2.2. Testing Details108

Depth Estimation. We adopt Marigold and Lotus as base-109
line. Both of them are fine-tuned from Stable Diffusion to110
utilize the generative prior, helping generate more accurate111
depth maps. Marigold employs the v-prediction paradigm,112
while Lotus adopts the x0 prediction paradigm. When col-113
lecting noise at different time steps, we utilize the transfor-114
mation method between diffusion prediction paradigms to115
obtain the noise prediction:116

ϵ =
√
ᾱtvθ +

√
β̄txt (1)117

118

ϵ = (xt −
√
β̄txθ)/

√
ᾱt (2)119

Blind Estimation. We adopt DiffBIR and StableSR as the120
baseline. For DiffBIR, it adopts a pre-processing Network121
to obtain a coarse HR image. The pre-processing Network122
is trained on the first stage with synthetic data. Although123
the pre-processing Network helps the diffusion backnone124
generate more realistic images, it may encounter unseen125
degradations that cannot be effectively removed. So the126
images after the pre-processing network still has large do-127
main gap. For StableSR, it uses a time-aware encoder to128
encode LR images and then embed the information with129
cross-attention. Both of them use post-processing modules130
to help improve fidelity. Considering that the effect of the131
post-processing modules is not completely controllable, we132
do not adopt them. Instead, we use the CFG technique to133
help balance the fidelity and reality of the output HR im-134
ages:135

ϵθ = wϵθ(xt, t, c) + (1− w)ϵθ(xt, t,Φ) (3)136

Where ϵθ represents the denoising network, c represents the137
condition and Φ represents non-condition generation.138
Optical Flow. We adopt Open-DDVM as the baseline.139
Open-DDVM uses a two-stage refinement method to gen-140
erate an optical flow map with two input images x1 and x2141
from coarse to fine. It first utilizes the pretrained diffusion142
model to generate the coarse optical flow map with low-143
resolution inputs. Then x2 is back warped with the coarse144
output to obtain the estimated x1 which is later compared145
with x0 to select the unrecovered regions. The unrecovered146
regions are then re-input to the diffusion model to refine147

the output. However, it is enough to collect the statistics 148
of noise prediction on the first stage and calculate λt with 149
these. 150
Semantic Segmentation. We adopt DDP as the baseline. 151
DDP relies on a category list to predict the semantic map. 152
When we test DDP on the target domain, It is imperative to 153
ensure that the categories in the source domain align consis- 154
tently with those in the target domain. Therefore, we select 155
the common categories between the source domain and the 156
target domain to create a category table, and then only eval- 157
uate the performance on these shared categories. 158

Table 2. Comparison results of diffusion models w/ and w/o our
methods for depth estimation under source-dependent DA setting.

Method NYUv2 KITTI

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
Marigold 8.19 89.8 12.43 85.19
Marigold+ours 7.26 90.9 11.97 85.56
Lotus 8.34 89.2 11.15 86.22
Lotus+ours 7.61 90.4 10.64 86.81

3. More Quantitative Results 159

3.1. Depth Estimation 160

The performance of our method on two more commonly 161
used datasets, NYUv2 and KITTI, is shown in Table 2. Al- 162
though their divergence from the source domain is not sub- 163
stantial, our method still achieves significant improvements 164
on these two datasets. 165

3.2. Blind Super-Resolution 166

The performance of our method on two synthetic datasets, 167
Set14 and BSD100, are shown in Table 1. Notably, although 168
the pre-processing network is trained on synthetic data, it 169
still struggles when the degradations are more complex. We 170
show the consistency of predictions when diffusion mod- 171
els encounter heavier degradations in Figure, illustrating the 172
domain gap still exists. Therefore, our method is also effec- 173
tive on synthetic datasets. 174

4. More Visualizations 175

We present visual comparison results across multiple tasks 176
and datasets, demonstrating that our method can effectively 177
help diffusion-based dense prediction models perform more 178
robustly under extreme cross-domain conditions. 179

References 180
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condition baseline +ours(SADA) +ours(SFDA)

Figure 1. Competitive results of models w/ and w/o our methods in depth estimation.
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condition baseline +ours(SADA) +ours(SFDA)

Figure 2. Competitive results of models w/ and w/o our methods in Blind SR.
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condition baseline +ours(SADA) +ours(SFDA)ground truth

Figure 3. Competitive results of models w/ and w/o our methods in optical flow.
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