FreeSplatter: Pose-free Gaussian Splatting for Sparse-view 3D Reconstruction

Supplementary Material

In this supplementary material, we present additional im-
plementation details (Section 1) and experimental results
(Section 2).

1. Implementation Details

Architecture and Training Details. FreeSplatter-O and
FreeSplatter-S share an identical model architecture con-
sisting of a 24-layer transformer with a width of 1024, to-
taling approximately 306 million parameters. Bias terms
are omitted throughout the model, except in the output lin-
ear layer for Gaussian prediction. The models are initially
trained on 256 x 256 input images for 500K steps, fol-
lowed by fine-tuning on 512 x 512 input images for 100K
steps, using 16 NVIDIA H800 GPUs. Training employs
the AdamW [6] optimizer with 51 = 0.9, S = 0.95,
a weight decay of 0.01, and a learning rate of 4 x 1075,
The maximum pre-training step is set to Thax = 107,
meaning the Gaussian position loss in Equation 5 is ap-
plied during the first 100K training steps. To improve
training efficiency, we leverage the xFormers [5] library
for memory-efficient attention, gradient checkpointing [1],
bfloat16 mixed-precision training [7], and deferred back-
propagation [15] for GS rendering. For each batch, we sam-
ple 4 input views for FreeSplatter-O and 2 for FreeSplatter-
S, along with 4 novel views for supervision.

Camera Intrinsic Estimation. Following DUSt3R [11],
we assume centered principle point and square pixels in
this work. Thanks to the point-cloud-based Gaussian rep-
resentation, we can extract the Gaussian locations as “point
maps” {X" € RFEXW>3 | =1, N} from the pre-
dicted Gaussian maps. Since all points are predicted in the
first view’s camera frame, we can estimate the focal length
of the first view by minimizing the pixel-projection errors:
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where (i',j') = (i — %,j — &) denotes pixel coordi-
nates relative to the principle pomt (&, %) This optimiza-
tion problem can be solved by Weiszfeld algorithm [8] effi-
ciently.

For multi-view scenarios, we cyclically translate the in-
put views so that each view becomes the “first view” in turn,
and estimate the focal length for each individually. Finally,
we compute the average focal length and use it for all views:
f =8 I
Masks for PnP-RANSAC solver. We adopt different
masks M™ in Equation 4 for object-centric and scene-level

reconstruction when estimating the input camera poses:

* For object-centric reconstruction, the model is trained on
white-background images rendered from 3D assets, and
the predicted Gaussians at the background area are not
restricted to be pixel-aligned (See Section 3.3 for details),
which may influence the camera pose solving. Therefore,
we assume white-background input images at inference
time, and adopt the foreground mask segmented by an
off-the-shelf background-removal tool' as M™. The seg-
mentation masks are not always perfect but are precise
enough for the PnP-RANSAC solver to estimate the poses
robustly.

* For scene-level reconstruction, we do not distinguish the
foreground and background areas during training, and all
the predicted Gaussians are restricted to be pixel-aligned
by applying the pixel-alignment loss universally. There-
fore, all visible Gaussians should contribute to pose solv-
ing and we use the Gaussian opacity map O™ € RH*W
to compute M™ with a minimal visibility threshold 7:
M™= (0" > ).

Camera Normalization. The definition of reconstruction
frame plays an important role in model training. We take the
camera frame of the first view as the reference frame for re-
construction, and normalize all cameras in a training batch
into this frame. Besides, a scaling operation is required to
deal with various scene scales. Denoting the original input
cameras as {P? =[RI |t] |n=1,...,N}, we adopt
different camera normahzatlon strategies for object-centric
and scene-level reconstruction.

For object-centric reconstruction, the training cameras
are sampled orbiting the object center. We first scale all
input cameras to make the distance from the first camera to
the object center equal to 2, and then transform all cameras
into the reference frame so that the first view’s camera pose
is an identity matrix. With this strategy, we fix the object
center at (0,0, 2) in the reference frame. For scene-level
reconstruction, the camera distributions are more complex.
Thus we fist transform all cameras into the reference frame,
and then scale them using a factor s = 1/d, d is the mean
distance of all valid points to the origin:
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where X" € RT*WX3 denotes the ground truth point map
unprojected from depth map, M" € R#*W is the valid
depth mask. To be noted, we also scale the ground truth
depths when scaling the cameras.

lhttps://qithub.com/danieantis/rembq
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Scene Scale Ambiguity. Given a set of scene images, we
can not infer the actual scale of the scene, since we can
obtain identical rendered images when scaling the scene
and cameras simultaneously, i.e., the scene scale ambiguity
problem. For object-centric reconstruction, we have fixed
the object center at (0, 0, 2) in the reference frame, so there
is no scale ambiguity problem. But for scene images, it is
hard to define a canonical center and it is reasonable for
our model to reconstruct the scene in arbitrary scale. Be-
sides, the training data is a mixture of multiple datasets that
vary greatly in scale, which may make the model confused
on scale prediction. Then a question arises, how can we
align the scale of the model’s prediction with the scale of
the training cameras so that we can render target views for
supervision?

As mentioned above, we scale the camera locations in a
training batch using s = 1/d (d is defined in Equation 2),
which can bound the scene into a range reasonable for the
model to predict. However, the scale factor is related to the
choice of valid points, leading to different scene scales with
a minimal difference in selected points. The model would
get confused if we train it to reconstruct exactly in this scale
since it has no idea which points we utilized to compute
this scale. Inspired by DUSt3R [11], we choose to rescale
the reconstructed Gaussians before rendering them to deal
with scene ambiguity. We first compute the scale factor § =
1/ d using Equation 2 with predicted Gaussian positions xn
and the same mask M™. Then we adjust the position and
scale of each Gaussian as fi = § - pu, S = § - S. With
this operation, we do not care about the absolute scale of
the reconstructed scene, but we expect it to align with the
ground truth scene after scaling them using the factors §
and s respectively. In the pre-training stage, we compute
Lyos using the scaled predicted positions and ground truth
positions too.

2. Additional Experiments
2.1. Comparison with PF-LRM

We include additional qualitative comparison with PF-LRM
in Figure 2. PF-LRM [10] is the most relevant work to
FreeSplatter-O. Although both of them deal with pose-free
sparse-view reconstruction and adopt a feed-forward trans-
former architecture, there are fundamental distinctions be-
tween them:

e Although PF-LRM is pose-free, it still requires ground
truth camera intrinsics as input. FreeSplatter operates
without camera poses or intrinsics, enhancing its practi-
cal applicability since it is very challenging to obtain the
camera intrinsics in many scenarios.

* In this work, we hope to point out that, Gaussian Splat-
ting is inherently more suitable for joint 3D reconstruc-
tion and camera pose estimation. The point-based nature

of Gaussian Splatting enables direct application of PnP
algorithms. By predicting multi-view Gaussian maps as
“augmented” point maps, our model facilitates both high-
quality 3D modeling and accurate pose estimation. In
contrast, PF-LRM’s triplane NeRF architecture requires:
(1) separate branches for reconstruction (triplane tokens
— triplane NeRF) and pose estimation (image tokens —
point clouds), and (ii) additional training overhead due to
triplane token processing. FreeSplatter-O directly maps
image tokens to Gaussians which handle both tasks, thus
is more elegant.

* Triplane NeRF faces challenges in modeling complex
scenes due to its limited resolution, restricted back-
ground modeling capability, and memory-intensive vol-
ume rendering. This means that training a scene-level
PF-LRM to achieve the similar function and performance
of FreeSplatter-S will be very challenging. In compar-
ison, FreeSplatter-S demonstrates superior scene recon-
struction while maintaining the same architectural frame-
work as FreeSplatter-O. We believe this scalability repre-
sents a significant advancement toward open-world high-
quality reconstruction.

We also hope to discuss the quantitative results on PF-
LRM’s GSO evaluation datasets. As Table 1 and Table 2 of
the main paper shows, PF-LRM achieves better metrics than
FreeSplatter-O on its GSO evaluation dataset. This is in fact
due to the failure cases caused by the lighting of images.
PF-LRM adopts high-intensity lighting in its dataset ren-
dering process, making some objects blend into the white
background. Since our model was not trained under such a
light condition, it struggles with these cases and produces
semi-transparent Gaussian predictions (e.g., the cap in Fig-
ure 1), harming the metric numbers.
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Figure 1. Failure Case on PF-LRM GSO Evaluation Dataset.

2.2. Mesh Reconstruction Quality

Mesh is the most commonly used 3D representation in in-
dustry. Although our reconstruction model predicts Gaus-
sians, meshes can be extracted by rendering multi-view
depth maps and then executing TSDF fusion. We com-
pare the quality of extracted meshes on the GSO evaluation
set using FreeSplatter-O, and compare with pose-dependent
LRMs. We adopt Chamfer Distance and F-Score (thesh-
old 0.2) as the metrics, computed using 16K sampled points
from both reconstructed and ground truth meshes. The re-
sults in Table 1 demonstrate FreeSplatter’s superior per-
formance on the OmniObject3D dataset across all metrics,
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Figure 2. Sparse-view Reconstruction on PF-LRM’s Evaluation Datasets. The first 2 rows are from the GSO evaluation set of PF-LRM,
while the last 2 rows are from its OmniObject3D evaluation set. FreeSplatter-O synthesizes significantly better visual details than PF-LRM.

while achieving comparable 3D reconstruction quality with
InstantMesh on the GSO dataset.

Method OmniObject3D

PSNRt SSIMt LPIPS| CDJ| F-Score@0.2 1
LGM* 24.852 0.942 0.060  0.073 0.766
InstantMesh* 24.077 0.945 0.062  0.044 0.882
FreeSplatter-O  31.929 0.973 0.027  0.043 0.896

GSO

PSNRT SSIMt LPIPS]| CDJ F-Score@0.2 1
LGM* 24.463 0.891 0.093  0.041 0.811
InstantMesh* 25.421 0.891 0.095  0.024 0.970
FreeSplatter-O  30.443 0.945 0.055  0.028 0.960

Table 1. Mesh Reconstruction on GSO and OmniObject3D. *
indicates that ground truth camera poses are used as input.

2.3. Inference Efficiency

We conducted comprehensive benchmarking on a single
A100 GPU, measuring both memory consumption and pro-
cessing time (including Gaussian prediction and camera
pose estimation). The results are in Table 2.

Input View Number GPU memory (MB) Inference time (s)
2 3611 1.268
3 3897 2.458
4 4225 3.669
5 4527 5.392
6 4837 7.495

Table 2. Time and memory cost during inference.

2.4. Results on Image-to-3D Generation

In this section, we provide extensive results on image-to-
3D generation by combining FreeSplatter-O with different
multi-view diffusion models.



Qualitative Results. In Figure 3 and Figure 4, we com-
pare FreeSplatter’s image-to-3D generation results with
pose-dependent LRMs, i.e., InstantMesh and LGM, us-
ing Zerol23++ v1.2 [9] and a recent model Hunyuan3D
Std [12] as the multi-view generator, respectively. For each
input image, we fix the random seed to generate multi-view
images, and visualize the novel view synthesis results of
each reconstruction model. From the results, we can ob-
serve that FreeSplatter generates significantly more clear
views and preserves the geometry and texture details bet-
ter than other baselines.

In Figure 5, we show another interesting use case of
FreeSplatter, i.e., using the input image to enhance the
image-to-3D generation results. For multiview diffusion
models like Zero123++ v1.1 [9], it generates 6 views from
an input image at predefined poses, but the pose of the input
image is unknown (its azimuth is known to be 0°, but ele-
vation is unknown). In this case, classical pose-dependent
LRMs cannot leverage the input image for reconstruction,
but FreeSplatter is able to do this! As Figure 5 shows, using
the input image alongside generated views can significantly
enhance the reconstruction results in many cases, especially
for contents that Zero123++ struggles to generate, e.g., hu-
man faces. Compared to generated views, the input image
is often more high-quality and contains richer visual details.
The pose-free nature of FreeSplatter makes it capable of
exploiting these precious information in the reconstruction
process.

In Figure 6, we show that FreeSplatter can faithfully re-
cover the predefined camera poses of existing multi-view
diffusion models from its reconstructed Gaussian maps.
This demonstrates its robustness to generated multi-view
images which may contain inconsistent contents.
Quantitative Results. Using the GSO evaluation dataset,
we perform single-image-to-3D generation and evaluate
the view synthesis and mesh extraction metrics (we use
Zerol123++ v1.2 for multi-view generation). The results
in Table 3 demonstrate the significant performance advan-
tages of FreeSplatter over pose-dependent baselines across
all metrics.

Method GSO

PSNRT SSIMtT LPIPS| CDJ] F-Score@0.2 1
LGM* 22.164 0.879 0.206 0.318 0.717
InstantMesh* 21.974 0.872 0.190 0.162 0.884
FreeSplatter-O  24.726 0.898 0.143 0.156 0.891

Table 3. Single Image-to-3D Generation on GSO dataset. *
indicates that ground truth camera poses are used as input.
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Figure 5. Single Image-to-3D Generation with Zero123++ v1.1 [9]. FreeSplatter can use the input image alongside generated views to
enhance the generation results, which is particularly valuable for challenging content like human faces, where Zero123++ often struggles
to generate. The input image is often more high-quality and contains richer visual details than the generated views, but its camera pose is
unknown, making it impossible for pose-dependent LRMs to leverage it.
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Figure 6. Camera Pose Estimation on Images Generated by Multi-view Diffusion Models. FreeSplatter can faithfully recover the
pre-defined camera poses of different multi-view diffusion models. We visualize the predefined camera poses of diffusion models and the
estimated poses with gray and colorful pyramids, respectively. ¢ and 6 denote the predefined azimuth and elevation angles, respectively.
For Zero123++ v1.2 and Hunyuan3D Std which generate images at predefined fixed focal lengths, we mark the predicted focal lengths (in
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2.5. Comparison with NoPoSplat

NoPoSplat [13] also aims to predict 3D Gaussians from
unposed images, sharing a similar motivation and high-
level pipeline with FreeSplatter. However, there are sig-
nificant differences between the two approaches: (i) No-
PoSplat uses MASt3R’s encoder-decoder architecture and
requires weights initialization, FreeSplatter uses a pure ViT-
based transformer and is trained from scratch; (ii) NoPoS-
plat assumes known camera intrinsics, whereas FreeSplat-
ter requires no camera parameters; (iii) NoPoSplat focuses
on scene-level images, while FreeSplatter is designed for
both object-centric and scene-level reconstruction, offering
broader applicability.

We compare FreeSplatter-S with the best NoPoSplat
model jointly trained on Re10K and ACID. Table 4 and Fig-
ure 7 show that NoPoSplat performs better on Re10K view
synthesis which we did not use for training, FreeSplatter out
performs it on ScanNet++ and CO3Dv2. For pose estima-
tion, our model consistently outperforms NoPoSplat.

Input Views

NopoSplat

Figure 7. Comparison with NoPoSplat on Rel0K (top) and
ScanNet++ (bottom).

Dataset  [Method |PSNR 1 SSIM 1 LPIPS ||RRE | RRA@15° T RRA@30° 1 TE|

‘NoPoSplat 21.477 0.782 0.255 | 1.765 0.971 0979  0.483
ScanNet++|Ours 25.807 0.887 0.140 10.776 0.991 0.990  0.066
‘NoPoSplal‘ 17.380 0.626 0.288 | 5.296 0.921 0938  0.327
CO3Dv2 |Qurs 20405 0.781 0.162 |3.048 0.976 0.986  0.190
NoPoSplat‘ 23.867 0.819 0212 |3.467 0.966 0.991 0.397
RelOK Ours 20.513 0.746  0.350 13.513 0.982 0.995 0.293

Table 4. Comparison with NoPoSplat.

2.6. Cross-dataset Generalization

Object-centric Datasets. To demonstrate the cross-dataset
generalization ability of FreeSplatter-O, we visualize the
object-centric reconstruction results on OmniObject3D and
ABO [2] datasets in Figure 8. Both datasets are outside
the training scope of FreeSplatter-O. We can observe that
FreeSplatter-O generates very high-quality renderings.

Scene-level Datasets. We test FreeSplatter-S on
RealEstate 10K [16], which we did not use for training.
The results are visualized in Figure 9, showing that our
model can faithfully reconstruct the input views at the
estimated input poses, while the rendered novel views
align well with the ground truth. We further demonstrate
FreeSplatter-S’s broad generalization capabilities through
extensive evaluation across diverse datasets in Figure 10,

covering scanned objects (DTU [3]), large-scale outdoor
scenes (Tanks & Temples [4]), multi-view object collec-
tions (MVImgNet [14]), and Al-generated synthetic con-
tent (videos generated by Sora”). These results validate our
framework’s robustness across varying scene types and cap-
ture conditions.

2ht:ps://openai.com/index/sora/
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Figure 8. Sparse-view Reconstruction and Camera Pose Estimation on ABO and OmniObject3D. Both datasets are unseen for
FreeSplatter-O. The model can faithfully estimate the input camera poses and render high-fidelity novel views.

Ours Ours
Input Views (rendered input views w/ pred. poses)  (rendered novel view)  G.T. Novel View

Figure 9. Sparse-view Reconstruction on RealEstatel0K. Our FreeSplatter-S model was not trained on RealEstate10K, we directly
utilize it for zero-shot view synthesis on this dataset. We can observe that our model can faithfully reconstruct the input views at the
estimated input poses, and the rendered novel views align well with the ground truth.
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Figure 10. Sparse-view Reconstruction on Various Scene-level Datasets. We show 2 examples for DTU, MVImgNet, Tanks & Temples

and Sora-generated videos, respectively.



2.7. Ablation Studies

Due to the page limit of the main manuscript, we have put
additional results of ablation studies here.

View Embedding Addition. We evaluate the effectiveness
of adding view embeddings to image tokens as in Equation
2. In FreeSplatter, we add the multi-view image tokens with
a reference view embedding e or a source view embed-
ding ey before feeding them into the transformer to make
the model identify the reference view, so that it can recon-
struct Gaussians in the reference view’s camera frame. We
present the results in Figure 11.

Specifically, for 4 input views V; ¢+ = 1,2,3,4), we
try different combinations of e and ey, when adding
them to the image tokens, and then render the recon-
structed Gaussians with an “identity camera pose” C' =
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] to see the re-
sults. We can observe that, when adding the j-th view’s
tokens with e, and other views’ tokens with eg., the ren-
dered image is exactly the j-th view. This means that the
model successfully identify the j-th view as the reference
view and reconstruct Gaussians in its camera frame. In
comparison, all other view embedding combinations leads
to degraded reconstruction.

Number of Input Views. We make an experiment on a
GSO sample to illustrate how the number of input views
influences the reconstruction quality on the object-centric
scenarios. Please refer to Figure 13 in the appendix for more
details.

Pixel-Alignment Loss. We try removing the pixel-
alignment loss defined in Equation 5 (main paper) from the
training of both models, and report the novel view render-
ing metrics on GSO and ScanNet++ dataset. The significant
drops in all metrics indicates its importance. The visual re-
sults in Figure 12 show that the model trained without pixel-
alignment loss produces blurry renderings, while adopting
it leads to significantly better visual details.

Position Loss. As noted in Section 3.3, the position loss
defined in Equation 4 is essential-without it, the model di-
verges. We ablate its effectiveness in Table 5, from which
we can observe that the performance drops sharply on GSO
without Lpos.

Lpos \ Lalign |  PSNRT SSIM T LPIPS|
X X 10.510 0.476 0.327
X v 11.218 0.494 0.306
v X 26.684 0.898 0.092
v v 30.443 0.945 0.055

Table 5. Ablation Study on Position Loss. The results are evalu-
ated on the GSO dataset with FreeSplatter-O.
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respectively. For each case, we visualize the image rendered with identity camera (i.e., reference pose) on the right.
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Figure 12. Ablation Study on Pixel-alignment Loss. We show two samples from the GSO dataset.
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Figure 13. Ablation Study on Number of Input Views. We show the visual comparison of FreeSplatter-O results with varying numbers
of input views (n = 1 — 6). From left to right: input views, reconstructed Gaussians, and rendered target views at 4 fixed viewpoints.
Additional input views increase Gaussian density and improve previously uncovered regions, with diminishing returns beyond n=4 when
object coverage becomes sufficient.
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