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Supplementary Material

A. Derivation of Grasping Force
In the derivation below, we assume physical properties are
uniform distributed over the entire object to grasp, which
can be easily extended to more generic situations.

The lower bound of the grasping force Fmin is the mini-
mal sufficient force applied on the gripper to lift the object
without slipping.
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where m, ρ and V are the mass, the density and the vol-
ume of the object respectively, θ is the lifting angle of the
gripper with upward at 0 degree, µ is the friction coefficient
between the gripper finger tips and the object surface, and
g ≈ 9.8m/s2 is the gravity constant.

The upper bound of the grasping force Fmax is the max-
imal force that does not cause any damage resulted by ex-
ceeding the yield stress σy or any undesirable deformation
over some maximum allowable bending curvature κmax of
the object. Following the formula of bending stress
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the corresponding maximum stress applied on the force
bearing surface at curvature κmax is
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Therefore, the maximal grasping force
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where A is the area of the force bearing surface of the object
(or equivalently the area of one side of the robot gripper
finger tips), σ is the bending stress at a point of the object
at perpendicular distance y from the neutral axis, s is the
outmost point of the force bearing surface, d is the thickness
of the force bearing surface of the object, R = 1/κ is the
radius of curvature of the neutral axis, and E is Young’s
modulus of electricity of the object material.

Figure 1. The robot platform (left) and the robotic gripper (right)
utilized in robot grasping experiments.

To maximize the grasping reliability, a reasonable choice
of grasping force would be F̄ = (Fmin + Fmax)/2. Ad-
ditionally, the grasping force must be confined within the
input bounds of the robotic gripper, and we also attempt
to avoid the gripper executing commands close to its input
bounds, with preferably 0 ≤ η ≤ 1 margin. These three
principals yield an optimal choice of grasping force

F ∗ =

{[
F̄
][Fmax]G−η∆F

[Fmin]G+η∆F
Fmin < Fmax[

F̄
]
G

Fmin ≥ Fmax

with [f ]G clipping a force f between the minimum
and the maximum grasping forces of robotic gripper G,
[f ]

fmax

fmin
clipping f between fmin and fmax, and ∆F =

max [0, [Fmax]G − [Fmin]G]. In reality, it is possible to ob-
serve Fmin > Fmax, rendering infeasibility to picked up an
object without damaging it. And F ∗ remains optimality in
such situations.

B. Robot Grasping Experiment Details
In robot grasping experiments, we utilized a Jacobi.ai JSR-
1 robot platform equipped with a TEK CTAG2F90-C
robotic gripper (see Figure 1). The force-bearing surface
at the tip of the gripper is measured to encompass an area of
A = 110mm2 = 0.00011m2. And a maximum allowable
bending curvature κmax = 0.5 is used.

B.1. Grasping Force Calibration
The robotic gripper employed in this study offers the capa-
bility to specify the grasping force on a normalized scale
0 ≤ NGF ≤ 100. Prior to conducting the grasping exper-
iments, we performed a calibration on its grasping force,
where 5 measurements are taken for each normalized input
data point. The calibration curve is shown in Figure 2. We
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Figure 2. Calibration curve of robotic gripper grasping force (left)
and its 5th-order polynomial smoothings (middle and right).

also note that there is a minimum enabling normalized in-
put, and the robotic gripper is only enabled with normalized
input NGF ≥ 15.

B.2. Full Object List and Experiment Results
We collected real-world 16 objects for the robot grasping
experiments, as illustrated in Figure 3. This collection rep-
resents a diverse range of weights and materials, including
plastic, ceramic, paper, steel, wood, and glass, etc. These
objects are commonly encountered in everyday life, and the
material properties of their different parts exhibit significant
variability. Consequently, naive grasping strategies that do
not account for material adaptability may find struggling to
grasp all of these items in an effective and safe manner.

Figure 3. List of selected objects for robot grasping experiments.

We compare our proposed method on integrating Gaus-
sianProperty to material-sensitive robot grasping with three
baselines, namely MinGF (with the minimum grasping
force, NGF = 15), MidGF (with medium grasping force,
NGF = 60) and MaxGF (with maximum grasping force,
NGF = 100). Table 2 in the main PDF listed the detailed

experiment results. As summarized in Table 2, our method
outperforms all the baselines and achieves a success rate of
100% on all the test objects, by successfully picking them
up without slippery or causing any damage or undesirable
deformation to them. Figure 4 shows the results of the com-
plete robot grasping experiment.

B.3. Visualization Of Full Pipeline

Fig. 5 presents two examples showing the full pipeline in-
cluding 3D reconstruction, material prediction, and grasp-
ing force estimation. The second example involves a trans-
parent plastic cup and illustrates the challenge of geometry
recovery. As expected, Gaussian Splatting struggles with
such objects. We include this case to highlight current lim-
itations and motivate future research.

C. More Results of Experiments

C.1. Datasets

For mass estimation, we use the ABO dataset, which pro-
vides mass data for each object. Since the NeRF2Physics
method does not include a corresponding hardness dataset,
we constructed our own dataset for hardness estimation us-
ing a similar methodology. Our dataset includes 10 house-
hold items, each captured in a realistic home setting. It fea-
tures multi-view images paired with Shore hardness mea-
surements. We captured the images and their corresponding
poses with an iPhone 13 camera. For each object, hardness
was measured at 10 specific points using a hardness tester,
with each measurement averaged over three trials. Each
measurement point is annotated with pixel coordinates in
the images. Notably, Shore A and Shore D hardness testers
use different indenters: Shore A measures within a range of
0-100, while Shore D spans a range of 100-200.

C.2. Evaluation Metrics

We report the following metrics, where p is the ground-truth
mass/hardness and p̂ is the estimated mass/hardness:
• Absolute difference error (ADE): |p− p̂|,
• Absolute log difference error (ALDE): | ln p− ln p̂|,
• Absolute percentage error (APE):

∣∣∣p−p̂
p

∣∣∣,
• Min ratio error (MnRE): min

(
p
p̂ ,

p̂
p

)
, and

• Pairwise Relationship Accuracy (PRA):

PRA =
1

Npairs

∑
i ̸=j

⊮
(
(pi > pj) ⇐⇒ (p̂i > p̂j)

)
,

where Npairs is the total number of object pairs, and ⊮(·)
is the indicator function, which equals 1 if the condition
inside is true, and 0 otherwise.
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Table 4. Complete robot grasping experiment results. The 16 test cases along with results in robot grasping experiments are listed. We
compare our proposed method (right) against three baselines (middle columns), starting from initial configurations (left). You can view
the MP4 videos of the experiments in the supplementary materials.

Table 5. Estimation of per-point Shore hardness on the real-
captured in-house collected dataset (10 objects, 100 points). Bold:
best model.

Method ADE (↓) ALDE (↓) APE (↓) MnRE (↑) PRA (↑)

NeRF2Physics 35.917 0.328 0.294 0.748 0.575
Ours* 28.583 0.220 0.198 0.820 0.686

C.4. Mass Estimation

3D Gaussian object reconstruction allows for the estima-
tion of the volumes of various parts composing an object.
By integrating this with material property prediction where
densities of different object parts are inferred, we can derive
an overall estimation of object mass. We subsequently com-
pare our mass estimation with the baseline NeRF2Physics,
Table 6 demonstrating that our method provides more accu-
rate quality assessments and significantly outperforms the
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NeRF2Physics

Shore Hardness Prediction Segementation Map Shore Hardness Prediction

Ours

Figure 10. Qualitative comparison of hardness prediction.
Compared to NeRF2Physics, our method provides more accurate
hardness prediction with clear boundaries.

3

Figure 4. Complete robot grasping experiment results. The 16 test cases along with results in robot grasping experiments are listed. We
compare our proposed method (right) against three baselines (middle columns), starting from initial configurations (left). You can view
the MP4 videos of the experiments in our supplementary material.
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Figure 5. Reconstruction, properties, predicted forces.

C.3. Hardness Estimation
Table 1 presents the quantitative results of our method
and NeRF2Physics on the hardness estimation task. Our
approach outperforms NeRF2Physics across all metrics,

demonstrating a significantly improved capability to accu-
rately assess object attributes. This improvement can be at-
tributed to the integration of LMMs, our method can have a
more accurate understanding of each part of the object and
form an accurate and clear-cut hardness estimation. Figure
6 illustrates the hardness estimation results produced by our
method on the same case without the application of voting .

Table 1. Estimation of per-point Shore hardness on the real-
captured in-house collected dataset (10 objects, 100 points). Bold:
best model.

Method ADE (↓) ALDE (↓) APE (↓) MnRE (↑) PRA (↑)

NeRF2Physics 35.917 0.328 0.294 0.748 0.575
Ours* 28.583 0.220 0.198 0.820 0.686
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Figure 6. Qualitative comparison of hardness prediction. Com-
pared to NeRF2Physics, our method provides more accurate hard-
ness prediction with clear boundaries.

C.4. Mass Estimation
3D Gaussian object reconstruction allows for the estima-
tion of the volumes of various parts composing an object.
By integrating this with material property prediction where
densities of different object parts are inferred, we can derive
an overall estimation of object mass. We subsequently com-
pare our mass estimation with the baseline NeRF2Physics,
Table 2 demonstrating that our method provides more accu-
rate quality assessments and significantly outperforms the
baseline across most indicators.

Table 2. Mass estimation on ABO dataset. Bold: best results.

Method ADE (↓) ALDE (↓) APE (↓) MnRE (↑)

NeRF2Physics 12.761 0.803 0.589 0.498
Ours* 5.960 0.744 1.609 0.559

C.5. Evaluation with Different LMMs
As shown in Table 3, our method yields consistent results
across different LMMs. GPT-4o achieves the highest mIoU,
while the open-source Qwen-VL-72B performs competi-
tively, confirming the method’s robustness and generality.
Table 3. Comparison of different LMMs on per-material mIoU.

LMM Backbone Wood Metal Plastic Fabric Ceramic Avg. mIoU↑
Qwen-VL-72B 57.22 33.47 38.46 56.90 88.40 54.89
GPT-4V 61.53 33.41 38.26 67.57 78.40 55.83
GPT-4o 70.43 37.32 38.51 67.10 96.19 61.91

C.6. Prompting Format and Ablation
We conducted an ablation study comparing three prompt-
ing strategies: (1) querying GPT-4V with only part-level
crops; (2) first showing the full image before asking about
the part (global-then-local); and (3) our structured global-
to-local approach. As shown in Table 4, our method sig-
nificantly outperforms simpler alternatives, confirming the
effectiveness of our design.

Table 4. Ablation of prompting strategies for material reasoning.
Prompt Strategy Wood Metal Plastic Fabric Ceramic Avg. mIoU↑
Part-only 37.90 13.82 17.03 27.40 14.69 22.17
Global-then-local (2-step) 52.03 26.17 31.28 44.95 63.71 43.63
Ours (global-to-local) 61.53 33.41 38.26 67.57 78.40 55.83

C.7. Effect of SAM in NeRF2Physics
We implemented a SAM-enhanced variant of
NeRF2Physics. As shown in Table 5, it improves
performance (25.59 → 30.31 mIoU) but remains below
ours (55.83). This shows that our gains come not from
segmentation alone, but from the full pipeline, including
multimodal reasoning and 3D aggregation. Fig. 7 further
shows that while SAM improves part boundaries, ma-
terial prediction remains unreliable without multimodal
inference.

Table 5. NeRF2Physics vs. its SAM-enhanced variant.
Method Wood Metal Plastic Fabric Ceramic Avg. mIoU↑
NeRF2Physics (original) 27.87 13.01 8.38 40.26 38.44 25.59
NeRF2Physics + SAM 31.41 15.11 18.69 45.54 40.78 30.31

Material SegmentaionInput RGB Segmentation Map

Figure 7. SAM-enhanced variant performance.

C.8. Effect of Voting Strategy.
Running SAM independently on each view may introduce
occasional segmentation errors. Our voting-based multi-
view aggregation mitigates this by projecting masks into
3D and suppressing inconsistent predictions via majority
consensus, improving overall robustness. A representative
example is shown in Fig. 8. Since Gaussian Splatting re-
constructs only visible surfaces, unobserved regions (e.g.,
object interiors) are not represented and thus not assigned
physical properties. This is consistent with surface-based
reconstruction pipelines.

✅

View 1 View 2

View 3 View 4

✅

✅

❌

Final Material Segmentation

Figure 8. Case of voting for material consistency.

D. Additional details of Our Method
D.1. Segmentation Process Using SAM at Different

Levels
We employ the Segment Anything Model (SAM) to gener-
ate segmentations at three levels of granularity: large-level,



middle-level, and small-level (Figure 9). Large-level seg-
mentation simplifies object grouping but lacks detail, while
small-level segmentation captures fine details at the cost of
increased computational complexity. To balance object un-
derstanding and efficiency, we select the middle-level seg-
mentation, which preserves meaningful part-level details
without excessive fragmentation, making it ideal for our
tasks.

Input Image

Large Level

SAM

Middle Level Small Level

Figure 9. Segmentation process using SAM at different levels
of granularity. From left to right: the input image, large-level seg-
mentation, middle-level segmentation, and small-level segmenta-
tion. For our model, we selected the middle-level of SAM predic-
tion to balance part-level object understanding and computational
efficiency.

E. Detail of Data Labeling
We utilize the open-source interactive segmentation tool
EISeg to annotate certain views of each object from ABO
and MVImgNet, as shown in Figure 10. Since some materi-
als are difficult to distinguish by the naked eye, such as alu-
minum and iron within the metal category. We established
ten precise and unambiguous labels for a fair comparison.
The labels are: wood, metal, plastic, glass, fabric, foam,
marble, ceramic, concrete, and leather.

F. Prompting Details
We provide the prompts used for material proposal with
other physical propertie such as hardness, density,Young’s
modulus and Poisson’s Ratio in Figure 11.

G. Effects of Frequency-based Voting Strategy
Figure 12 showcases that implementing a frequency-based
voting strategy can enhance the accuracy of property esti-

LocationInteractive Segmentation

foam
metal

leather

metal

wood

metal

Label

Figure 10. Examples of data labeling. These objects are sourced
from the ABO-500 dataset.

Provided a picture. The left image is the original picture of the
object(Original Image), and the middle image is a partial segmentation
diagram(Mask Overlay), mask is in red. the right image is a partial of the
object.
Based on the image, firstly privide a brief caption of the part. Secondly
describe what the part is made of (provide the major one).  Finally, we
combine what the object is and the material of the object to predict the 
hardness, density,Young's modulus and Poisson's Ratio of the material.
Choose whether to use Shore A hardness or Shore D hardness depending on
the material. You may provide a range of values for hardness instead of a
single value. 

Format Requirement:
    You must provide your answer as a (caption,material, hardness, Shore
A/D, density,Young's modulus and Poisson's Ratio) pair. Do not include any
other text in your answer, as it will be parsed by a code script later. Your
answer must look like: caption,material,hardness low-high, <Shore A or
Shore D>. Common material library:{wood, metal, plastic, glass, fabric, foam, food,
ceramic, paper, leather}. The material type must be choose from the above
"common material library”. Make sure to use Shore A or Shore D hardness,
not Mohs hardness."

1

2

System

Figure 11. Prompt used for proposing materials and other physical
properties.

mation. By projecting to multi-view images, we can deter-
mine the most frequently occurring material for each part.
This frequency-based approach ensures consistency and re-
liability in the predicted properties, effectively aggregating
information from different viewpoints, minimizing errors
and improving overall prediction accuracy.
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Figure 12. Effects of Frequency-based Voting Strategy. We pro-
vide an example to demonstrate the effectiveness of the frequency-
based voting strategy. The result misclassified the “aluminum” and
“wood” into “plastic” and “’steel’ without voting strategy.

H. More qualitative results of Material Seg-
mentation

In the supplementary material, we provide additional
performance comparisons with the baseline model
Nerf2Physics. As shown in Figure 13, our method predicts
the physical properties of objects more accurately. We also
show some cases on MVImgNet dataset in Figure 14.

I. Failure cases
However, our method still has limitations. For instance,
when the surface texture of an object is ambiguous, it can
lead to incorrect classification of material categories, as il-
lustrated in Figure 15.
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Figure 13. Qualitative comparison of Material Segmentation. These objects are sourced from the ABO-500 dataset.
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Figure 14. Qualitative results of object material segmentation on MVImgNet. Our model makes reasonable and boundary-accurate
material predictions for objects with multiple or single materials.

Input RGB Segmentation Map Material Segmentaion

Figure 15. Examples of Challenging Material Segmentation Cases. These objects are sourced from the ABO-500 dataset.
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