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Table 1. An overview of the training datasets.

Dataset Domain #Frames #Videos
3DKenBurns [22] In-the-wild 76K 526
DynamicReplica [14]  Indoor/Outdoor 145K 1126
GTA-StM [28] Outdoor/In-the-wild 19K 234
Hypersim [25] Indoor 75K X
IRS [29] Indoor 103K 722
MatrixCity [17] Outdoor/Driving 452K 3029
MidAir [7] Outdoor/In-the-wild 357K 2433
MVS-Synth [13] Outdoor/Driving 12K 120
Spring [21] In-the-wild 5K 49
Structured3D [35] Indoor 71K X
Synthia [26] Outdoor/Driving 178K 1276
TartanAir [31] In-the-wild 306K 2245
UrbanSyn [10] Outdoor/Driving 7K X
VirtualKitti2 [3] Driving 43K 320
Total - 1.85M 12K
1. Datasets

1.1. Training Datasets

We collect 14 open-source synthetic RGBD datasets to fa-
cilitate the training of GeometryCrafter, among which 11
can be composited into video sequences. To construct the
training video dataset, we extract non-overlapping segments
with a sequence length not exceeding 150 frames. An
overview of the training datasets is provided in Tab. 1, cat-
egorized into four distinct domains: indoor, outdoor, in-the-
wild and driving scenarios. It is noteworthy that the frame
count may slightly differ from the original datasets, ow-
ing to the exclusion of invalid frames. To ensure compu-
tational efficiency and adhere to GPU memory constraints,
we preprocess all images and videos to a standardized res-
olution of 320 x 640. Specifically, we apply cover resizing
while preserving the original aspect ratio, followed by cen-
ter cropping to achieve the desired resolution. Additionally,
we implement random resizing as a technique for augment-
ing camera intrinsics.
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1.2. Evaluation Datasets

We exhaustively evaluate GeometryCrafter and previous
state-of-the-art methods using seven datasets with ground
truth labels that remain entirely unseen during the training
phase. Notably, to ensure compatibility with most base-
lines, such as MoGe [30] and UniDepth [24], which neces-
sitate an input image aspect ratio of less than 2, we prepro-
cess the evaluation datasets in the following manner:

* GMU Kitchens [9]: All scenarios are employed for eval-
uation. For each scenario, we extract 110 frames with
a stride of 2 to ensure extensive spatial coverage while
preserving temporal coherence. To reduce memory usage
during evaluation, we downsample the generated 1920p
videos and ground truth depth maps to a resolution of
960 x 540.

* ScanNet [5]: Following DepthCrafter [12], we select 100
scenes from the test split for evaluation, wherein each
video comprises 90 frames with a frame stride of 3. Due
to the discrepancy in resolutions between the RGB im-
ages and depth maps, we first resize the RGB images to
align with the depth maps, followed by center cropping
to remove the black space around RGB images, yielding
videos of resolution 624 x 464 .

* DDAD [11]: All 50 sequences from the validation split
of the DDAD dataset are utilized for evaluation, with se-
quence lengths of either 50 or 100 frames. Owing to the
high memory demands of the raw resolution 1936 x 1216,
we apply center cropping to reduce the resolution to
1920 x 1152, followed by downsampling to 640 x 384
for evaluation. The ground truth depth maps, acquired
via LiDAR sensors, are inherently sparse; consequently,
the preprocessing has negligible influence on the compar-
ative analysis of various methods.

* KITTI [8]: All sequence in the valid split of depth an-
notated dataset are used evaluation. For excessively long
video sequences, we extract the initial 110 frames, result-
ing in 13 videos with sequence lengths ranging between
67 and 110 frames. Given that the original resolution of
1242 x 375 fails to conform to the aspect ratio require-
ments of most baseline methods, we apply center crop-
ping to achieve a resolution of 736 x 368.


https://geometrycrafter.github.io

* Monkaa [20]:We select 9 scenes from the original dataset
for evaluation, truncating each video sequence to 110
frames while maintaining the original resolution of 960 X
540. To derive valid masks, we manually annotate the sky
regions within each sequence.

* Sintel [2]: All sequences within the training split are em-
ployed for evaluation, with sequence lengths ranging be-
tween 21 and 50 frames. Given the original resolution of
1024 x 436 for each image, we apply cropping to achieve
a standardized resolution of 872 x 436.

* DIODE [27]: We utilize all 771 images from the vali-
dation split of DIODE for evaluation purposes. To ad-
dress the noisy values along the edges of objects within
the depth maps, we employ a Canny filter to detect edge
regions, subsequently refining the valid masks based on
the filtering outcomes.

2. Loss Functions of VAE and UNet

To train the point map VAE, we define the loss function
Lpmap to measure the reconstruction errors of point maps.
The reconstruction loss Lyecon for each valid pixel is defined
as the L1 norm
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where M = {p/m(p) = 1} and Ep,@\diag are the recon-
structed values at pixel p. To enhance surface quality, we
additionally supervise the normal maps derived from the re-
constructed point maps and the ground truth:

Ly=> (1-n, -7y 2)
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To enhance supervision for local geometry, we draw inspi-
ration from MoGe [30] and propose a multi-scale depth loss
function that measures the alignment between reconstructed
and ground truth depth maps within local regions H,,, pa-
rameterized by scale o
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Here, Z,, 7., and %, 7., are the mean value of predicted and

ground truth depth map defined on local region #,,. In prac-

tice, we split video frames into non-overlapped patches of
W H

size 2~ x < to define the local regions. The reconstruction

objective Lpymgp is thus given by
ﬁpmap = ‘CI”CCOI’I + Lms + )\H‘Cl’l (4)

Following LayerDiffuse [33], we apply the frozen decoder
Dsvp to measure the extent to which the latent offset dis-
rupts the modified latent distribution during training, given

by
Lidentity = ||Xdisp — Xadispl|3 = | Xdisp — Psvp (Zpmap)|[3 (5)
where || - ||3 denotes the mean square loss function. Addi-

tionally, we introduce a mask loss to regularize the recon-
structed valid mask:

Linask = Hffl - m||§ (6)

where m € RT>*H*W i the ground truth valid mask. The
final training objective of VAE is defined as

EVAE = Eidentity + £pmap + )\maskﬁmask @)

To finetune the UNet Dy parameters on the adjusted la-
tent space obtained by our proposed point map VAE, we
employ the objective Lyne: for supervision, written as
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Here the noisy latent input z; is generated by adding Gaus-
sian noise n to the latent code Zpmap. Zv is the conditional la-
tent code of input video. zyor denotes the per-frame geom-
etry priors provided by MoGe [30]. o denotes noise level at
time ¢, satisfying log oy ~ N (Preans Psta) With Ppean = 0.7
and Py = 1.6 adopted in the EDM [15] noise schedule and
Ao, 1s a weight parameter at time ¢.

3. More Implementation Details

For the point map VAE design, we reuse the architecture of
SVD’s VAE with minor modification: we adopt zero convo-
lution initialization [34] to the output convolution layer of
encoder and apply a scale factor of 0.1 to ensure that latent
offsets do not disrupt the latent distribution during the initial
stage of training. Inspired by the training strategy of SVD,
we first train the model from scratch with an AdamW [19]
optimizer on RGBD images, with a fixed learning rate of
le-4 for 40K iterations. Then, we finetune the temporal lay-
ers in the decoder for another 20K iterations on video data.
The batch sizes are set to be 64 and 8 for the respective
stages, with sequence lengths randomly sampled from [1, §]
for video data in the second stage. For the UNet denoiser,
we initialize UNet with the pretrained parameters provided
by DepthCrafter [12], finetuning it with a learning rate of
le-5 and a batch size of 8. We train our diffusion UNet in
two stages, where we first train it on videos with sequence
lengths sampled from [1, 25] frames to adapt the model to
our generation task, and then solely finetune the temporal
layers with the sequence length randomly sampled from [1,
110] frames due to the limitation of GPU memory. After
training, the UNet can process videos with varying lengths
(e.g., 1 to 110 frames) at a time. Both components are



Table 2. Inference time.of different components on 448 x 768
videos with 110 frames.

Method | Per-frame Prior Encoder UNet Decoder Total
Ours(G) 0.1 0.04 0.04 0.08 |0.27s/frame
Ours(D) 0.1 0.04 0.01 0.08 [0.24s/frame

trained on 320 x 640 images or videos for efficiency, with
random resizing and center cropping applied for data aug-
mentation and resolution alignment. All trainings are con-
ducted on 8 GPUs, with the entire process requiring about
3 days.

4. Camera Pose Estimation

To recover camera poses from point maps, we need to
establish correspondences of the static background across
frames. We first obtain the dynamic object masks by anno-
tating the first frame using SegmentAnything [16], and then
apply XMem [4], a robust method for video object segmen-
tation, to generate the dynamic target masks for the sub-
sequent frames. Given the dynamic masks, we adopt Su-
perPoint [6] to detect reliable points of interest in the first
frame and filter out those points that belong to the dynamic
objects. After that, we employ SpaTracker [32] to generate
the 2D trajectory of each point, which is subsequently used
to form the constraints for the camera pose optimization.
Let p, denote the XY coordinate of a 2D trajectory at time
step ¢, the 2D point p; can be lifted to the world coordinate
p¢ using the following transformation

e = Wt_lﬂ-[_(i (pt; D(pt)) )

Here W; denotes the camera pose at time step ¢, D(-) de-
notes the scale-invariant depth value obtained from our pre-
dicted point maps and w,}tl refers to the back-projection of
the 2D point to camera coordinate with camera intrinsic K,
which can also be estimated from the point maps. For time
step ¢/, the 2D projected coordinate should align with the
trajectory position at timestep ¢’. Therefore, we formulate
the camera pose estimation as the following problem

whin > lm WW g pe, D(pa)] — s, Dp)]lf3
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Due to the sequence length limitation of SpaTracker (12
for each segment), we apply a shifted window strategy with
6 overlapping frames to regularize the optimization of all
camera poses. The optimization process for each scene
takes from less than 1 minute to several minutes, depend-
ing on the number of frames.

5. Limitations

The major limitation of our method is the expensive com-
putation and memory cost, primarily attributing to the large

model size inherent in both the VAE and U-Net architec-
tures. As shown in Tab. 2, we provide a comparison
of the inference times of different components in Geome-
tryCrafter. Our experiments are conducted on a single GPU,
revealing that the decoder of the point map VAE is the bot-
tleneck during inference. How to design a lightweight de-
coder capable of producing temporally consistent outputs
will be a focal point of our future works.

6. More results

In the following pages, we provide more visual results of
our method. We provide more results on Sora [1]-generated
videos to demonstrate the temporal consistency and geom-
etry quality of our method, as shown in Fig. 1. For com-
prehensive comparison with MGE methods, we provide a
visual analysis in Fig. 2. Our method achieves robust and
sharp point map estimation compared to other methods. In
contrast, UniDepth [24] fails to segment the sky region from
the input frames, while MoGe [30] struggles to handle fine-
grained structure. Fig. 3 and Fig. 4 shows the point maps
aligned with the optimized camera poses, where the rows
from left to right are 4 input frames uniformly sampled from
the whole video and two views of aligned point maps in
the world coordinates. We only provide the results of con-
catenating 8 point maps sampled from the predicted point
sequences for better visualization.
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Figure 1. Visual results on Sora-generated videos. The rows from left to right are the input videos, the disparity maps and the point cloud
of the first frame.

Input Video UniDepth MoGe Ours

Figure 2. Visual comparison with monocular geometry estimation methods. All point maps are converted to disparity maps for better
visualization the sharpness of depth prediction.



Figure 3. Visual results on DL3DV [18] with camera poses estimated from the output point maps. We concatenate 8 aligned point
maps from the original point map sequence for visualization.
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Figure 4. Visual results on DAVIS [23] with camera poses estimated from the output point maps. We concatenate 8 aligned point
maps from the original point map sequence for visualization.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators,
2024. 3

D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In European Conf. on Computer Vision (ECCV), pages 611—
625. Springer-Verlag, 2012. 2

Yohann Cabon, Naila Murray, and Martin Humenberger. Vir-
tual kitti 2. arXiv preprint arXiv:2001.10773, 2020. 1

Ho Kei Cheng and Alexander G Schwing. Xmem: Long-
term video object segmentation with an atkinson-shiffrin
memory model. In European Conference on Computer Vi-
sion, pages 640—658. Springer, 2022. 3

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieBner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, 2017. 1

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages
224-236,2018. 3

Michael Fonder and Marc Van Droogenbroeck. Mid-air: A
multi-modal dataset for extremely low altitude drone flights.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition workshops, pages 0-0, 2019.
1

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. IJRR,
2013. 1

Georgios Georgakis, Md Alimoor Reza, Arsalan Mousavian,
Phi-Hung Le, and Jana KoSeckd. Multiview rgb-d dataset
for object instance detection. In 2016 Fourth international
conference on 3D vision (3DV), pages 426-434. IEEE, 2016.
1

Jose L Gémez, Manuel Silva, Antonio Seoane, Agnes
Borrds, Mario Noriega, German Ros, Jose A Iglesias-
Guitian, and Antonio M Lépez. All for one, and one for
all: Urbansyn dataset, the third musketeer of synthetic driv-
ing scenes. arXiv preprint arXiv:2312.12176, 2023. 1

Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 1
Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong
Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter:
Generating consistent long depth sequences for open-world
videos. In CVPR, 2025. 1,2

Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-
view stereopsis. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2821-2830,
2018. 1

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Dy-
namicstereo: Consistent dynamic depth from stereo videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13229-13239, 2023.
1

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems,
35:26565-26577, 2022. 2

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 4015-4026, 2023. 3

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhen-
zhi Wang, Dahua Lin, and Bo Dai. Matrixcity: A large-scale
city dataset for city-scale neural rendering and beyond. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3205-3215, 2023. 1

Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin,
Kun Wan, Lantao Yu, Qianyu Guo, Zixun Yu, Yawen Lu,
et al. DI3dv-10k: A large-scale scene dataset for deep
learning-based 3d vision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 22160-22169, 2024. 5

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101,2017. 2
Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040-4048, 2016. 2

Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nali-
vayko, and Andrés Bruhn. Spring: A high-resolution high-
detail dataset and benchmark for scene flow, optical flow
and stereo. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4981—
4991, 2023. 1

Simon Niklaus, Long Mai, Jimei Yang, and Feng Liu. 3d
ken burns effect from a single image. ACM Transactions on
Graphics (ToG), 38(6):1-15, 2019. 1

F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
Computer Vision and Pattern Recognition, 2016. 6

Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia
Segu, Siyuan Li, Luc Van Gool, and Fisher Yu. Unidepth:
Universal monocular metric depth estimation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10106-10116, 2024. 1, 3

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit
Kumar, Miguel Angel Bautista, Nathan Paczan, Russ Webb,
and Joshua M Susskind. Hypersim: A photorealistic syn-
thetic dataset for holistic indoor scene understanding. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10912-10922, 2021. 1



[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234-3243,
2016. 1

Igor Vasiljevic, Nick Kolkin, Shanyi Zhang, Ruotian Luo,
Haochen Wang, Falcon Z. Dai, Andrea F. Daniele, Moham-
madreza Mostajabi, Steven Basart, Matthew R. Walter, and
Gregory Shakhnarovich. DIODE: A Dense Indoor and Out-
door DEpth Dataset. CoRR, abs/1908.00463, 2019. 2
Kaixuan Wang and Shaojie Shen. Flow-motion and depth
network for monocular stereo and beyond. IEEE Robotics
and Automation Letters, 5(2):3307-3314, 2020. 1

Qiang Wang, Shizhen Zheng, Qingsong Yan, Fei Deng,
Kaiyong Zhao, and Xiaowen Chu. Irs: A large naturalistic
indoor robotics stereo dataset to train deep models for dis-
parity and surface normal estimation. In 2027 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), pages
1-6. IEEE, 2021. 1

Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang,
Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Unlocking
accurate monocular geometry estimation for open-domain
images with optimal training supervision. arXiv preprint
arXiv:2410.19115,2024. 1,2, 3

Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and Se-
bastian Scherer. Tartanair: A dataset to push the limits of
visual slam. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4909-4916.
IEEE, 2020. 1

Yuxi Xiao, Qiangian Wang, Shangzhan Zhang, Nan Xue,
Sida Peng, Yujun Shen, and Xiaowei Zhou. Spatialtracker:
Tracking any 2d pixels in 3d space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20406-20417, 2024. 3

Lvmin Zhang and Maneesh Agrawala. Transparent image
layer diffusion using latent transparency. arXiv preprint
arXiv:2402.17113,2024. 2

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 3836-3847, 2023. 2

Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3d: A large photo-realistic
dataset for structured 3d modeling. In Computer Vision—
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part IX 16, pages 519-535.
Springer, 2020. 1



	Datasets
	Training Datasets
	Evaluation Datasets

	Loss Functions of VAE and UNet
	More Implementation Details
	Camera Pose Estimation
	Limitations
	More results

