Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution
by Image Fusion with the Panchromatic Image
SUPPLEMENTARY MATERIALS

Abstract

This supplementary material serves to provide additional
findings and discussions presented in the main manuscript
titled “Hipandas: Hyperspectral Image Joint Denoising
and Super-Resolution by Image Fusion with the Panchro-
matic Image.” It is designed to offer a more detailed ex-
ploration and a clearer understanding of the various com-
ponents and outcomes of the research. The supplementary
content includes the following detailed sections:

1. A description of the baseline configurations that were
utilized for the comparative evaluation of different meth-
ods, which is detailed in Sec. S-1;

2. A sensitivity analysis that delves into the weights as-
signed to the loss function, stage transition timing, and
stage learning rates, is discussed in Sec. S-2;

3. A visual comparison of the fusion results obtained from
the different methods presented in Sec. S-4;

4. Additional results from the application of the proposed
method to real-world datasets provided in Sec. S-5.

5. An analysis of rank selection for the proposed UHipan-
das method outlined in Sec. S-6.

6. A comparison of inference times across different meth-
ods detailed in Sec. S-3.

7. An exploration into the interaction between pandenois-
ing and pansharpening processes discussed in Sec. S-7.

8. An investigation into the intermediate results and the
relationship between pandenoising and pansharpening
within the UHipandas method presented in Sec. S-8.

This supplementary material is intended to enhance the

reader’s comprehension of the Hipandas method and its

components.

S-1. Baseline configuration

This section provides a description of the configuration pa-

rameters and setup for the baseline methods that were em-

ployed in our experimental evaluations.

* PWTYV is a model-based optimization algorithm specifi-
cally designed for the pandenoising task. We conducted

the grid search to obtain the optimal performance of
PWTYV within our experimental framework.

e SwinlR, a state-of-the-art Transformer-based network
originally developed for RGB image restoration, presents
a challenge when applied to our dataset due to its limited
number of images. Consequently, instead of attempting to
finetune SwinIR on our dataset, pretrained weights were
utilized in the experiments.

e PLRD, HIRD, and RPNN are three methods that have
been previously proposed for HS pansharpening or HSI
denoising. For the purpose of a fair and direct compar-
ison with our proposed method, we have carefully re-
implemented these algorithms on our dataset.

S-2. More ablation experiments

S-2.1. On loss function weights

In the main manuscript, the components of our loss func-
tion were combined by simple summation, without assign-
ing specific weights to individual terms. In this supplemen-
tary material, we delve deeper into the significance of each
term by introducing weights to investigate their relative con-
tributions to the overall optimization process. The modified
loss functions are defined as follows:

LY =\ Lp+ 2L + AsLg,

ey
L = \Lp+ 2LP + As(Lg + Lp).
Here, A1, A2, and A3 represent the weights assigned to
the denoising loss (Lp), the first and second stage super-
resolution loss (Egl) and ﬁg) ), and the PAN image’s texture
loss (Lo and Lp), respectively. The results presented in
Table S-1 suggest that the adjustment of these weights does
not lead to substantial changes in the overall performance.

S-2.2. On stage transition timing

The stage transition timing ¢ represents a critical hyper-
parameter in our two-stage training process, determining
when the model switches from the first stage (pre-training)
to the second stage (fine-tuning). Our experiments investi-
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Figure S-1. Restoration results on the Dongying_8_0 image for Gaussian noise with o = 10.

Table S-1. Sensitivity analysis of loss weights in UHipandas.

A1 :Ag: A3 1:1:1 (ours)  2:1:1 1:2:1 1:4:1 1:1:2 1:1:4
PSNR?T 36.61 36.68 36.07 36.48 36.37 36.00 35.03
SSIM? 0.9227 0.9213 0.9108 0.9218 0.9211 0.9202 0.9162

ERGAS| 45.26 4420 4241 4542 4541 43.88  40.44
SAM| 8.68 8.80 8.71 8.75 8.81 8.95

Table S-2. Ablation results on the stage transition timing.

t 100 200 300 400 500 600 700
PSNRT 35.18 3588 3631 36.61 36.77 37.03 37.19
SAM] 818 827 849 868 890 9.00 9.14

Table S-3. Ablation results on the relative learning rates.

q 0.4 0.5 0.6 0.7 0.8 0.9 1
PSNRT 36.56 36.61 36.60 36.53 36.50 36.60 36.61
SAM| 862 862 874 879 885 891 8.68

gate the impact of varying ¢ from 100 to 700 epochs while
maintaining a fixed fine-tuning epochs.

As shown in Tab. S-2, we observe an interesting trade-off
between spatial quality (measured by PSNR) and spectral
fidelity (measured by SAM). Earlier transitions (e.g., t =
100) yield better spectral preservation (SAM = 8.18) but at
the cost of spatial quality (PSNR = 35.18 dB). Conversely,
later transitions improve PSNR up to 37.19 dB at t = 700,
but with increased spectral distortion (SAM = 9.14).

The balance in our experiments occurs at ¢ = 400
epochs, achieving a PSNR of 36.61 dB while maintaining
reasonable spectral quality (SAM = 8.68). This configura-
tion allows sufficient time for the network to establish ro-
bust feature representations in Stage 1 before specializing
for super-resolution in Stage 2.

S-2.3. On stage learning rates

It is well-acknowledged that the fine-tuning stage often re-
quires a relatively smaller learning rate than that of the pre-
training stage. Let learning rates (n; and 73) in two stages
be proportional, o = g1, where g is the learning rate pro-
portion between two stages. We evaluate g values ranging
from 0.4 to 1.0 while keeping 7; fixed at 1073, S-3 reveals
several key insights:
* The method demonstrates remarkable stability across dif-
ferent ¢ values, with PSNR variations less than 0.11 dB;
* Contrary to conventional wisdom about fine-tuning, we
find equal learning rates (¢ = 1) work well.

The robustness to learning rate variations can be at-
tributed to the PAN guidance that provides stable supervi-
sory signals throughout training. This stability is particu-
larly valuable in practical applications where hyperparam-
eter tuning may be limited. The choice of ¢ = 1 simpli-
fies implementation while maintaining competitive perfor-
mance across all metrics.

S-3. Inference time comparison

Tab. S-4 provides a comprehensive comparison of the infer-
ence times for various methods when tested against a chal-
lenging mixture noise scenario with a noise probability of
p = 0.55. Our proposed method, UHipandas, exhibits com-
petitive inference times, showcasing its efficiency in pro-



Table S-4. Inference time comparison for the compared methods.

Method PWTV+SwinlR  SwinIR+PWTV  HIRD+SwinlR PWTV+RPNN RPNN+PWTV HIRD+RPNN
Time 8 10 14 31 33 37
UHipandas (ours) ~ SwinIR+HIRD ~ RPNN+HIRD  PWTV+PLRD PLRD+PWTV  HIRD+PLRD PLRD+HIRD

46 69 92 518 520 524 579
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Figure S-2. Restoration results on the Dongying_5_6 image for non-i.i.d. Gaussian noise.

cessing hyperspectral images. Notably, UHipandas outper-
forms methods that incorporate PLRD, HIRD, and RPNN,
which are characterized by their reliance on diffusion-based
networks or necessitate individual fine-tuning for each hy-
perspectral image test case.

S-4. Visual comparison

Figs. S-1 to S-4 present additional visual comparison results
that underscore the effectiveness of our method in noise re-
moval and the restoration of intricate textures within hyper-
spectral images. The PSNR values displayed in the figures
further validate the efficacy of UHipandas, thereby confirm-
ing its robustness and suitability for hyperspectral image en-
hancement tasks.

S-5. Details of experiments on the real-world
dataset

In this section, we delve into the details of the exper-
iments conducted on a real-world hyperspectral dataset.
The dataset comprises the NLRHS image with dimensions
144 x 144 x 49, and the corresponding HRPAN image of
size 864 x 864. The spatial resolution ratio between the
HRPAN and NLRHS images is s = 6. The visual results of
the restoration process are presented in Fig. S-5. The figure
showcases the effectiveness of our method in enhancing the
spatial and spectral quality of the NLRHS image by fusing
it with the HRPAN image.

S-6. Rank selection

The selection of appropriate ranks for the GDN and GSRN
components within UHipandas is crucial for achieving sat-
isfactory performance. Fig. S-6 provides a detailed illus-
tration of the rank sensitivity for both components. The
analysis reveals that while there is a slight degradation in
performance as the rank increases, the overall impact is not
large. The highest PSNR value of 37.43 dB is achieved with
a GDN rank of 9 and a GSRN rank of 7, indicating an ef-
fective balance between denoising and super-resolution ca-
pabilities. Even at the worst-case scenario, with a PSNR
value of 37.17 dB, the performance of UHipandas remains
superior to that of the second-best method, PWTV+RPNN,
which has a PSNR of 36.70 dB. This demonstrates the ro-
bustness of UHipandas to variations in rank selection and its
consistent high performance across different configurations.

S-7. Interaction of pandenoising and pan-
sharpening

The intricate relationship between pandenoising and pan-
sharpening in the context of hyperspectral image process-
ing is a critical aspect of our study. Fig. S-7 provides a vi-
sual representation of the denoised images, illustrating the
distinct outcomes of each process. Here, Fig. S-7(b) pro-
vides a visual representation of the denoised images, illus-
trating the distinct outcomes of each process. That is, this
image is produced by omitting the GSRN component from
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Figure S-4. Restoration results on the Dongying_2_8 image for mixture noise with p = 0.35.

the UHipandas method. In contrast, Fig. S-7(c) represents
the output of the full Hipandas process, which integrates
both pandenoising and pansharpening. The visual compar-
ison clearly demonstrates that the inclusion of pansharpen-
ing in the Hipandas method not only enhances the pande-
noising performance but also effectively mitigates spectral
distortion, thereby preserving the integrity of the spectral
information.

S-8. The intermediate results for UHipandas

To gain a deeper understanding of the UHipandas method
and its underlying mechanisms, we present the intermedi-
ate results of the two-stage process in Fig. S-8. The ini-
tial stage, which involves pretraining, results in a denoised
LRHS image that has successfully removed noise. How-
ever, this stage introduces a notable spectral/color distor-
tion, which is a common challenge in hyperspectral image
processing. The subsequent stage, as depicted in Fig. S-8,
aims to address this issue. In stage 2, the GSRN compo-

nent is applied, which not only refines the spatial resolution
but also makes a significant contribution to the reduction
of spectral distortion. This reduction can be interpreted as
the recovery of lost spectral information, highlighting the
GSRN’s dual role in restoring both spatial and spectral de-
tails of the hyperspectral image. The intermediate results
underscore the importance of the sequential and comple-
mentary nature of the stages within UHipandas, each play-
ing a vital part in achieving the overall high-quality restora-
tion of the hyperspectral image.
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Figure S-5. Restoration results on the real-world image.
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3 37.31 37.34 37.33 37.37 3741 37.35 37.38 37.39 37.38 37.24 37.37 37.26 37.35 37.41
4 3733 37.35 37.38 37.38 37.38 37.39 37.34 37.37 37.36 37.34 37.33 37.35 37.37 37.39
5 37.33 37.33 37.33 37.33 37.35 37.27 37.33 37.29 37.28 37.34 37.32 37.32 37.34 37.37
6 37.38 37.35 37.40 37.38 37.37 37.34 37.35 37.37 37.37 37.28 37.39 37.31 37.28 37.35
7 3737 37.33 37.36 37.36 37.33 37.36 37.37 37.36 37.34 37.24 37.34 37.34 37.35 37.33
8 37.35 37.39 37.38 37.28 37.33 37.41 37.31 37.27 37.34 37.40 37.34 37.40 37.33 37.31
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Figure S-6. PSNR values of UHipandas with different ranks for the non-i.i.d. Gaussian noise case.

(a) Clean LRHS (b) Only Pandenoising (PSNR: 40.46) (c) UHipandas (PSNR: 41.35)

Figure S-7. Visual comparison for the interaction of pandenoising and pansharpening
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Figure S-8. The intermediate results for UHipandas.
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