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In this supplementary material, we primarily provide re-
lated work on pansharpening, more details for solving the
proposed RUN modell, and real-world experiments.

1. Related Work

In this section, we introduce most related methods for pan-
sharpening, generally following two main branches, includ-
ing DL-based and DUN-based methods.

1.1. DL-based Pansharpening

Due to the great achievements in various computer vision
communities, CNNs have naturally emerged as a main-
stream technique for pansharpening, with powerful mod-
eling capabilities in learning mapping relationships among
PAN, LRMS, and HRMS. Representatively, He et al. [7]
crafted a convolution-based module, specifically aiming at
the recovery of spatial details that were absent in LRMS im-
ages. By leveraging the strengths of both LRMS and PAN
images, Ref. [23] employed two distinct CNNs that were
tailored to extract complementary features. Hou et al. [8]
proposed a new source-discriminative adaption convolution
and bidomain modeling for pansharpening, broadcasting a
general framework for high resolution learning.

With the initial success in language processing, Trans-
former has now demonstrated exceptional proficiency in
capturing long-range dependencies within the context of
image restoration. Following this route, Lu et al. [16]
proposed a model with lightweight CNNs and Transform-
ers combined to address the image super-resolution task.
Bandara et al. [3] engineered a novel fusion network of
textural-spectral features for pansharpening, which trans-
fers high-resolution textural features from PANs to LRMS
spectral features through a multi-head soft-attention mech-
anism. Lately, with the aid of a dual Transformer archi-
tecture, Quan et al. [17] proposed an effective semantic
restoration network for RS pansharpening. Zhang et al.
[22] introduced a novel high-frequency wavelet network
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that capitalizes on the spatial-frequency interaction and fre-
quency division capabilities inherent in wavelet transform.

Yet with exceptional results delivered, the purely net-
work solutions suffer notoriously from the black-box na-
ture, whose performance depends heavily on massive at-
tempts of error avoidance even given large-scale datasets,
leaving along the poor interpretability.

1.2. DUN-based Pansharpening

To integrate strengths while mitigating the limitations of
model-based and DL-based approaches, DUNs primarily
tailor DL modules to the investigated pansharpening chal-
lenge, guided by the theoretical philosophy. For instance,
Xu et al. [20] developed GPPNN, a novel network de-
rived from the resolution of dual optimization problems,
which is then efficiently optimized through a gradient pro-
jection. A unique framework named PanCSC-Net, as in-
troduced by [4], employed convolutional sparse coding for
better distinction between shared and distinct characteris-
tics of LRMS and PAN. Later, Yang et al. [21] introduced
a highly interpretable deep neural network called memory-
augmented conditional unfolding. Li et al. [12] developed a
Transformer variant for DUN and customized a local-global
denoiser to efficiently model complementary dependencies.
Lately, another DUN with high interpretability was pro-
posed by Li et al. [13], which is based solely on the learning
of convolutional dictionaries in the encoding stage. Unfor-
tunately, all current solutions require a significant amount
of effort designing simulations for spatial and spectral re-
sponse matrices, with expected quality rarely guaranteed.
In addition, simulations are often dominated by black-box
networks and suffer from poor interpretability.

2. ADMM-based Unfolding Optimization

In this section, we simply employ the typical ADMM
scheme, yet put more efforts on network architecture dur-
ing unfolding stages. Based on the unconstrained form of



Eq. (5), we can obtain:
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By alternately updating one variable with the others
fixed, problem (1) can be solved separately.

Algorithm 1 ADMM for RPCA-based Pansharpening

1: Input: LRMS Y'; PAN Z; Parameter ov; Maximum
iteration 7.

2: Output: HRMS X.
3: Initialization: Interpolated LRMS Y, set t = 0.
4: whilet < T do
5. Update S**! via
t
S+ = shrink (Y — Xt %, oz)
M1 M1

6:  Update T'*! via

M
T'™! = proxNet (Xt — 2)
M2

7. Update X*+! via
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8:  Update M}™' and M1™' via
Mt = M} +py (Y — (X + 8)
M§+1 = M2t + [LQ (Tt+1 — Xt+1)

9: t+—t+1
10: end while
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Figure 1. Illustration of spectral degradation matrices R and R” .

Step 1: For S-subproblem. By extracting all terms

containing .S from problem (1), we need to solve:
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which has the following solution:
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in which shrink is the thresholding operator.
Step 2: For T'-subproblem. By removing the terms that
are irrelevant to 1", we can deduce

M;

T = Ay (T) + 22|17 - X' +
2 M2
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Eq. (4) is a deterministic approximate operator given a
known prior J;. Unfortunately, the uncertainty of the J;
function also causes the inaccessibility of any closed-form
solutions. Accordingly, we propose a low-rank network
(LRNet) as the prior extractor for joint implicit-explicit us-
age, which can typically be expressed as:

M;
2

where proxNet is an approximate operator replaced by the
proposed network architecture.

Step 3: For X -subproblem. The X -related subprob-
lem at the ¢-th iteration is

T'*! = proxNet(X* — ) (5)
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Obviously, Eq. (6) is already differentiable, the gradient
descent scheme can be borrowed as a solver.

X = X'~ 9RT (Z ~ RX") —yp (Xt - 7041 = 2
v (Xt e 1\%{)

@)
where v > 0 is the stage-specific learnable step size.
What’s more, a convolution is employed in place of the
spectral degradation matrix R to reduce channels from §
to 1, and another point Conv is utilized as the matrix R”
for the corresponding inverse channel increase, as depicted
in Fig. 1.

Step 4: Update of the Lagrangian parameters. Un-

der the principle of general ADMM, we can update the La-
grangian multipliers in parallel as

{ Mt = M+ (Y — (X' 4 8)

ME = M 4 1p(T - X ®

Summarizing the aforementioned descriptions, we
present the entire ADMM-based solution process for solv-
ing the problem (1) in Algorithm 1.



3. Proof of Theorem 1

We aim to show that the combination of depthwise con-
volution and SoftShrink effectively approximates Singular
Value Thresholding (SVT). This proof follows by analyzing
the spectral transformation induced by depthwise convolu-
tion and demonstrating how SoftShrink enforces singular
value shrinkage.

3.1. Step 1: Depthwise Convolution as a Localized
Spectral Transformation

Consider a given input tensor 7 € R *WXC  Depthwise
convolution operates **independently** on each channel,
applying a spatial filter to each slice 7*) € R#*W for
k = 1,...,C. Formally, depthwise convolution is defined
as:

Fo(T) =T x1 Kp x2 Ky, )
where K, K,, € R3*3 are learnable convolutional ker-
nels applied along the height and width dimensions, respec-
tively. Expanding for an individual channel 7 (%), the oper-
ation can be rewritten in matrix form as:

70 — K, THK]. (10)

conv
This formulation resembles a bilinear transformation of
T () using the filters K, and K,, which can be interpreted
as a localized spectral transformation. Under the assump-
tion that these filters approximate orthonormal decompo-
sitions, this convolutional operation can be rewritten in a
singular value form:

Fo(T)=UxVT. (11)
Thus, the depthwise convolution extracts dominant spa-
tial structures, approximating a low-rank projection.
3.2. Step 2: SoftShrink as Singular Value Thresh-
olding

The SoftShrink function is defined as a nonlinear element-
wise thresholding function:

r—T, T>T,
Hr(z) =0, —-r<z<T, (12)
r+T1, r<-—T.

When applied to the singular values of 3, the function
modifies each singular value o; as:

&; = max(o; — 7,0). (13)

This operation is equivalent to the Singular Value
Thresholding (SVT) step in low-rank approximation tech-
niques, where only singular values greater than 7 are re-
tained. Applying SoftShrink to the singular values in the
decomposition:

3 = SoftShrink (X, 7), 14)
where each singular value o; is thresholded.

3.3. Step 3: Rank Preservation and Reduction

From Step 1, depthwise convolution approximates a local-
ized singular value decomposition:

Fo(T)=UxV'. (15)

Applying SoftShrink to the singular values leads to:

T*=UxV', &; =max(o; —T,0). (16)
Since thresholding eliminates small singular values, we
obtain the rank inequality:

rank(3) < rank(X). 17

Thus, the rank of 7 * satisfies:

rank(7™) < rank(T). (18)

This completes the proof.

4. Real-World Experiments
4.1. Quality Metrics and Competitors

To comprehensively assess the quantitative results, six
widely used metrics, i.e., Peak Signal to Noise Ratio
(PSNR), Structural Similarity (SSIM), Spectral Angle Map-
per (SAM), Erreur Relative Globale Admensionnelle de
Synthese (ERGSA), as well as the universal image qual-
ity indices for 4-band (Q4) and 8-band images (QS) [6], are
adopted.

Overall, thirteen cutting-edge approaches are selected
as competitors, including three model-based methods, i.e.,
GSA [1], SFIM [14], as well as Wavelet [11], and ten DL-
based solutions, i.e., SFIIN [26], Mutlnf [27], MDCUN
[21], LGTEUN [12], BiMPan [8], SSDBPN [23], PAPS [9],
WINet[22], DISPNet [19], and MSAN [15]. The practical
settings of all compared methods follow the source codes
provided by the original authors. The experiments are car-
ried out in the same environment, i.e., PyTorch framework
with a single NVIDIA GTX 3090 GPU. The specific set-
tings of our proposal are as follows: [ loss, Adam opti-
mizer (0.9, 0.999), Epoch (500 for GF2, WV2 and 140 for
WV3), Batch size (4), Initial learning rate (1.5 x 10~3), de-
cay rate (0.85 per 100 epoch). The recovered example from

WV-3 and the corresponding error maps are shown in Fig.
2

L.



Table 1. Average results at full resolution. The best and second best values are respectively highlighted by red and blue colors.

WorldView-3 GaoFen-2

Method
Dyl Ds]  QNRT  D){ Ds]  QNRT
SFIIN, 0.0198 0.0352 0.9458 0.0687 0.1876 0.7557
Mutlnfos 0.0163 0.0420 0.9423 0.0755 0.1762 0.7613
MDCUNy, 0.0747 0.1673 0.7708 0.0712 0.1938 0.7712
LGTEUNy3 0.0162 0.0310 0.9532 0.0696 0.1981 0.7457
BiMPanyg  0.0298 0.0305 0.9463 0.0644 0.1419 0.8120
SSDBPNy3  0.0262 0.0581 0.9181 0.0663 0.1575 0.7861
PAPSo4 0.0365 0.0405 0.9244 0.0682 0.2144 0.7317
WINetoy 0.0214 0.0302 0.9451 0.0682 0.1406 0.7936
DISPNety, 0.0136  0.0387 0.9501 0.0687 0.1465 0.7974
MSAN,5 0.0187 0.0279 0.9539 0.0661 0.1651 0.8058
RUN 0.0254 0.0274 0.9535 0.0660 0.1386 0.8131

(b) SFIIN[26]

(a) LRMS

(c) MutInf[27]

(h) PAPS[9]

(i) WINet[22]

(d) MDCUN][21] (e) LGTEUN[12]

(j) DISPNet[19]

(f) BiMPan[8] (g) SSDBPN[23]

(k) MSAN[15]

() RUN

(m) Ground truth

Figure 2. Visual comparisons on typical WV-3 data.

4.2. Results on Full-Scale Datasets

In this section, we present the outcomes of our method on
a full-scale dataset and the comparative analysis against al-
ternative approaches. Given the absence of reference im-
ages, we directly feed the full-scale images into the model,
which is previously trained with the reduced-scale datasets,
to obtain pansharpening outputs. We investigated the fusion
performance of all algorithms at full resolution. In this sce-
nario, we employed hybrid quality without reference (QNR)
[2], Spatial Distortion Index D, [18], and Spectral Distor-
tion Index D [10], as criteria. In each dataset, we test with

PAN images of 512 x 512 and LRMS images of 128 x 128.
From Table 1, one can easily see that our proposed RUN
performs on par with other algorithms on the WV-3 dataset,
yet achieves the best results on the GF-2 dataset. Overall,
this indicates that it possesses excellent spectral and spa-
tial preservation capabilities. The visual comparison against
reference methods at full resolution is presented in Fig. 3,
where we show a representative GF-2 case. Among these
deep learning-based methods, LightNet exhibits relatively
poor spectral information retention capabilities. Although
SFIIN, MDCUN, and SSDBPN show slightly better perfor-
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Figure 3. Visual comparisons on typical GF-2 data.

Table 2. Ablation study with PSNR and parameters (M).

Ablation Setting PSNRT  Params (M){
w/o SOC 30.0245 1.3412
DWT+DWConv 32.3071 1.3412
Nonlinear+SVT N/A 3.4408
Dimension L-3 X 32.6097 1.5030
Dimension L-4 X 32.6204 1.6648
Dimension L-5x 32.6241 1.8265
Block number-1 32.3974 0.9895
Block number-3 32.3870 1.6929
Only Conv 3 x 3 32.1025 1.3611
Full Model (Ours) 32.6064 1.3412

mance, their results exhibit blurred rooftop edges in road
areas. Compared to other methods, our approach achieves
optimal fusion results even without GT guidance, highlight-
ing its superior performance.

S. Parameter analysis and ablation experi-
ments

In Table 2, we conduct two key experiments: (1) a compari-
son between DWT transformation and DWConv, and (2) an
analysis of nonlinear transformation combined with tradi-
tional SVT. The results indicate that DWT, as a linear trans-
formation, exhibits lower feature extraction efficiency com-
pared to nonlinear transformation, while traditional SVT in-
curs a significant parameter overhead due to the necessity of
performing SVD at each layer.

For the parameter L in Eq. (7) of the main text, we
further explore its setting within the range of 3-5x. Our
findings suggest that increasing L enhances the richness
of information representation but also leads to a substan-
tial increase in the number of parameters. Empirical re-
sults demonstrate that setting . = 2 provides a favorable
balance between performance and computational efficiency,

further validating the effectiveness of combining nonlinear
transformation with SVT. Additionally, when replacing the
multi-scale CNN with a standard 3 x 3 convolution, we ob-
serve a notable performance degradation, highlighting the
critical role of multi-scale feature aggregation in achieving
optimal results.
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